IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p433-d1016499.html
   My bibliography  Save this article

Prediction of the Discharge Coefficient in Compound Broad-Crested-Weir Gate by Supervised Data Mining Techniques

Author

Listed:
  • Meysam Nouri

    (Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia 57561-51818, Iran)

  • Parveen Sihag

    (Department of Civil Engineering, Shoolini University, Solan 43521-15862, Himachal Pradesh, India)

  • Ozgur Kisi

    (Civil Engineering Department, Ilia State University, 0162 Tbilisi, Georgia
    Department of Civil Engineering, Technical University of Lübeck, 23562 Lübeck, Germany
    School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia)

  • Mohammad Hemmati

    (Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia 57561-51818, Iran)

  • Shamsuddin Shahid

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia)

  • Rana Muhammad Adnan

    (School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China)

Abstract

The current investigation evaluated the discharge coefficient of a combined compound rectangular broad-crested-weir (BCW) gate ( C dt ) using the computational fluid dynamics (CFD) modeling approach and soft computing models. First, CFD was applied to the experimental data and 61 compound BCW gates were numerically simulated by resolving the Reynolds-averaged Navier–Stokes equations and stress turbulence models. Then, six data-driven procedures, including M5P tree, random forest (RF), support vector machine (SVM), Gaussian process (GP), multimode ANN and multilinear regression (MLR) were used for estimating the coefficient of discharge ( C dt ) of the weir gates. The results showed the superlative accuracy of the SVM model compared to M5P, RF, GP and MLR in predicting the discharge coefficient. The sensitivity investigation revealed the h 1 / H as the most effective parameter in predicting the C dt , followed by the d/p, b / B 0 , B / B 0 and z/p. The multimode ANN model reduced the root mean square error (RMSE) of M5P, RF, GP, SVM and MLR by 37, 13, 6.9, 6.5 and 32%, respectively. The graphical inspection indicated the multimode ANN model as the most suitable for predicting the C dt of a BCW gate with minimum RMSE and maximum correlation.

Suggested Citation

  • Meysam Nouri & Parveen Sihag & Ozgur Kisi & Mohammad Hemmati & Shamsuddin Shahid & Rana Muhammad Adnan, 2022. "Prediction of the Discharge Coefficient in Compound Broad-Crested-Weir Gate by Supervised Data Mining Techniques," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:433-:d:1016499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaji, Amir Hossein & Bonakdari, Hossein & Khodashenas, Saeed Reza & Shamshirband, Shahaboddin, 2016. "Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 14-19.
    2. Hossein Safari & Soheila Etezadi & Mohsen Moradi-Moghadam & Mohammad Reza Fathi, 2021. "Maturity evaluation of supply chain procedures by combining SCOR and PST models," International Journal of Process Management and Benchmarking, Inderscience Enterprises Ltd, vol. 11(5), pages 707-724.
    3. Muhammet Emiroglu & Ozgur Kisi, 2013. "Prediction of Discharge Coefficient for Trapezoidal Labyrinth Side Weir Using a Neuro-Fuzzy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1473-1488, March.
    4. Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    5. Masood Akbari & Farzin Salmasi & Hadi Arvanaghi & Masoud Karbasi & Davood Farsadizadeh, 2019. "Application of Gaussian Process Regression Model to Predict Discharge Coefficient of Gated Piano Key Weir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3929-3947, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain Zare & Mohammad Vaghefi & Amin Mahmoudi & Abdol Mahdi Behroozi, 2023. "Experimental Exploration of Flow Hydraulics and Discharge Coefficient for an Inclined Circular Labyrinth Weir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4521-4536, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyoumars Roushangar & Mahdi Majedi Asl & Saman Shahnazi, 2021. "Hydraulic Performance of PK Weirs Based on Experimental Study and Kernel-based Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3571-3592, September.
    2. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    3. Guoqiang Qiu & Yinghong Wang & Shanshan Guo & Qian Niu & Lin Qin & Di Zhu & Yunlong Gong, 2022. "Assessment and Spatial-Temporal Evolution Analysis of Land Use Conflict within Urban Spatial Zoning: Case of the Su-Xi-Chang Region," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    4. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    5. Askari, Ighball Baniasad & Shahsavar, Amin & Jamei, Mehdi & Calise, Francesco & Karbasi, Masoud, 2022. "A parametric assessing and intelligent forecasting of the energy and exergy performances of a dish concentrating photovoltaic/thermal collector considering six different nanofluids and applying two me," Renewable Energy, Elsevier, vol. 193(C), pages 149-166.
    6. Fatih Üneş & Darko Joksimovic & Ozgur Kisi, 2015. "Plunging Flow Depth Estimation in a Stratified Dam Reservoir Using Neuro-Fuzzy Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3055-3077, July.
    7. Bonakdari, Hossein & Khozani, Zohreh Sheikh & Zaji, Amir Hossein & Asadpour, Navid, 2018. "Evaluating the apparent shear stress in prismatic compound channels using the Genetic Algorithm based on Multi-Layer Perceptron: A comparative study," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 400-411.
    8. Qiankun Meng & Yupei Liu & Wei’an Li & Mingshan Yu, 2023. "Bonding or Indulgence? The Role of Overborrowing on Firms’ Innovation: Evidence from China," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    9. Sahar Ahmadzadeh & Tahmina Ajmal & Ramakrishnan Ramanathan & Yanqing Duan, 2023. "A Comprehensive Review on Food Waste Reduction Based on IoT and Big Data Technologies," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    10. Rana Muhammad Adnan & Hong-Liang Dai & Reham R. Mostafa & Kulwinder Singh Parmar & Salim Heddam & Ozgur Kisi, 2022. "Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    11. Elbeltagi, Ahmed & Azad, Nasrin & Arshad, Arfan & Mohammed, Safwan & Mokhtar, Ali & Pande, Chaitanya & Etedali, Hadi Ramezani & Bhat, Shakeel Ahmad & Islam, Abu Reza Md. Towfiqul & Deng, Jinsong, 2021. "Applications of Gaussian process regression for predicting blue water footprint: Case study in Ad Daqahliyah, Egypt," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Ya-Cing Jhan & Pin Luarn & Hong-Wen Lin, 2022. "Individual Differences in Digital Game-Based Supply Chains Management Learning: Evidence from Higher Vocational Education in Taiwan," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    13. Yongtao Peng & Bohai Chen & Eleonora Veglianti, 2022. "Platform Service Supply Chain Network Equilibrium Model with Data Empowerment," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    14. Onur Genç & Özgür Kişi & Mehmet Ardıçlıoğlu, 2014. "Determination of Mean Velocity and Discharge in Natural Streams Using Neuro-Fuzzy and Neural Network Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2387-2400, July.
    15. Amiya Abhash & K. K. Pandey, 2021. "Experimental and Numerical Study of Discharge Capacity and Sediment Profile Upstream of Piano Key Weirs with Different Plan Geometries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1529-1546, March.
    16. Ioannis Margaritis & Michael Madas & Maro Vlachopoulou, 2022. "Big Data Applications in Food Supply Chain Management: A Conceptual Framework," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    17. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:433-:d:1016499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.