IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4421-d789183.html
   My bibliography  Save this article

Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan

Author

Listed:
  • Muhammad Aslam

    (Department of Irrigation and Drainage, University of Agriculture Faisalabad Pakistan, Faisalabad 38000, Pakistan)

  • Muhammad Arshad

    (Department of Irrigation and Drainage, University of Agriculture Faisalabad Pakistan, Faisalabad 38000, Pakistan)

  • Vijay P. Singh

    (Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA)

  • Muhammad Adnan Shahid

    (Department of Irrigation and Drainage, University of Agriculture Faisalabad Pakistan, Faisalabad 38000, Pakistan
    Agricultural Remote Sensing Lab (ARSL), National Center of GIS and Space Applications (NCGSA), Faisalabad 38000, Pakistan)

Abstract

The estimation of the groundwater (GW) potential in irrigated areas is crucial for the sustainable management of water resources in order to ensure its sustainable use. This study was conducted in a selected area of the Chaj doab, Punjab, Pakistan, to quantify the impacts of the pumping and the recharge on the aquifer therein. To that end, a groundwater flow model (MODFLOW) and a groundwater recharge model (WetSpass) were coupled to assess the conditions of the aquifer. The model was calibrated manually on twelve-year data (2003–2014) against the observed groundwater levels, and it was validated with five-year data (2015–2019). Three main scenarios (divided into ten subscenarios) were simulated for the future prediction of the groundwater: Scenario-I (to assess the impact of the pumping if the prevailing conditions of the years from 2003 to 2019 were to continue until 2035); Scenario-II (to assess the impact of the pumping on the aquifer by increasing the pumping capacity by 25, 50, 75, and 100% for the coming 10 years); and Scenario-III (to assess the impact on the aquifer of the decrease in the average groundwater recharge from the river by 50% by following the same pumping trend). The Scenario-I results show that there would be an 18.1 m decrease in the groundwater table at the end of the year 2035. The Scenario-II results predict decreases in the water table by 2.0, 5.5, 9.8, and 14.3 m in the year 2029 as a result of increases in the pumping capacity of 25, 50, 75, and 100%, respectively. The results of Scenario-III show that, with the decrease in the recharge from the rainfall, there would be a 0.7 m decrease in the water table, and that, from open-water bodies, there would be a 2.4 m decrease in the water table. These results are very helpful for determining the recharge and discharge potential of the aquifer.

Suggested Citation

  • Muhammad Aslam & Muhammad Arshad & Vijay P. Singh & Muhammad Adnan Shahid, 2022. "Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4421-:d:789183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    2. Jehangir, Waqar & Qureshi, Asad Sarwar & Ali, Nazim, 2002. "Conjunctive water management in the Rechna Doab: An overview of resources and issues," IWMI Working Papers H038778, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    2. Hanan G. Jacoby & Ghazala Mansuri, 2018. "Governing the Commons? Water and Power in Pakistan’s Indus Basin," Working Papers id:12933, eSocialSciences.
    3. Fakhri Manghi & Dennis Williams & Jack Safely & Moshrik Hamdi, 2012. "Groundwater Flow Modeling of the Arlington Basin to Evaluate Management Strategies for Expansion of the Arlington Desalter Water Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 21-41, January.
    4. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    5. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    6. Abbas Afshar & Mohamad Amin Tavakoli & Ali Khodagholi, 2020. "Multi-Objective Hydro-Economic Modeling for Sustainable Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1855-1869, April.
    7. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    8. Junaid Alam Memon & Mehwish Qudoos Alizai & Anwar Hussain, 2020. "Who will think outside the sink? Farmers’ willingness to invest in technologies for groundwater sustainability in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4425-4445, June.
    9. Love Kumar & Ramna Kumari & Avinash Kumar & Imran Aziz Tunio & Claudio Sassanelli, 2023. "Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review," Sustainability, MDPI, vol. 15(7), pages 1-38, April.
    10. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    11. Muhammad Waqar Akram & Nida Akram & Hongshu Wang & Shahla Andleeb & Khalil Ur Rehman & Umair Kashif & Syed Farhaan Hassan, 2020. "Socioeconomics Determinants to Adopt Agricultural Machinery for Sustainable Organic Farming in Pakistan: A Multinomial Probit Model," Sustainability, MDPI, vol. 12(23), pages 1-15, November.
    12. Muhammad Salam & Muhammad Jehanzeb Masud Cheema & Wanchang Zhang & Saddam Hussain & Azeem Khan & Muhammad Bilal & Arfan Arshad & Sikandar Ali & Muhammad Awais Zaman, 2020. "Groundwater Storage Change Estimation Using Grace Satellite Data In Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 10-15, February.
    13. Dan Yin & Longcang Shu & Xunhong Chen & Zhenlong Wang & Mokhatar Mohammed, 2011. "Assessment of Sustainable Yield of Karst Water in Huaibei, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 287-300, January.
    14. Muhammad Salam & Muhammad Jehanzeb Masud Cheema & Wanchang Zhang & Saddam Hussain & Azeem Khan & Muhammad Bilal & Arfan Arshad & Sikandar Ali & Muhammad Awais Zaman, 2020. "Groundwater Storage Change Estimation Using Grace Satellite Data In Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 13-18, February.
    15. Dawit K. Mekonnen & Hira Channa & Claudia Ringler, 2015. "The impact of water users' associations on the productivity of irrigated agriculture in Pakistani Punjab," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 733-747, September.
    16. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    17. Yousaf, Wasif & Awan, Wakas Karim & Kamran, Muhammad & Ahmad, Sajid Rashid & Bodla, Habib Ullah & Riaz, Mohammad & Umar, Muhammad & Chohan, Khurram, 2021. "A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Jayanath Ananda & Mohamed Aheeyar, 2020. "An evaluation of groundwater institutions in India: a property rights perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5731-5749, August.
    19. Fawen Li & Jiale Qiao & Yong Zhao & Wei Zhang, 2014. "Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4875-4893, October.
    20. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4421-:d:789183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.