IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4416-d788999.html
   My bibliography  Save this article

Applying a Set of Potential Methods for the Integrated Assessment of the Marine Eco-Environmental Carrying Capacity in Coastal Areas

Author

Listed:
  • Kankan Wu

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
    Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China
    Fujian Province Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China)

  • Keliang Chen

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
    Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China)

  • Yu Gao

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

  • Shang Jiang

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

  • Haiping Huang

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

Abstract

The accelerated socioeconomic development has placed the coastal ecosystems under stress, which influences the sustainable development of coastal areas. Marine eco-environmental carrying capacity assessment (MECCA) can provide a scientific basis for coordinating coastal socioeconomic development and eco-environmental protection, ensuring a more effective marine ecosystem-based management approach toward sustainability. However, accurate assessment methods are still in the exploratory stage, as there has been a lack of systematic research and applications combining integrated MECCA with a unified method to underpin coastal management processes. In light of this issue, this study applied the marine eco-environmental carrying capacity in coastal waters (MECCCW) conceptual framework to support the establishment of an assessment indicator system for MECCA and used the regularization method and entropy method to determine weights. This study also applied the simplified state space model to comprehensively evaluate and analyze the marine eco-environmental carrying capacity (MECC) of coastal areas. Focusing on the coastal area of Sanya Bay, southern China, as the study area, we assessed the MECC for the period from 2015 to 2020. The state of the MECC was divided into three grades: load capacity, full-load capacity, and overload capacity. The results showed that (1) the MECCA indicator system in Sanya Bay included a total of three criteria and eight assessment indicators and (2) the weights of the environmental carrying capacity (ECC) and human activities (HA) were both relatively higher than that of ecological resilience (ER). The latter result indicates that either ECC or HA could play a more predominant role in the changes of the MECC state in Sanya Bay. The results also indicated that (3) for each criterion, ECC, ER, and HA were at load capacity from 2015 to 2020. In this instance, ECC and HA presented similar change trends in relation to the MECC state of Sanya Bay. Finally, (4) the overall Sanya Bay’s MECC was also at load capacity and weakened, fluctuating between 2015 and 2020. These findings indicate that the coastal area of Sanya Bay is capable of sustainable development, but that there is a need for further eco-environmental improvement. The results of this study can serve as a reference when decisions have to be made about coastal management from an environmental and ecological perspective. Furthermore, this method may provide a feasible approach for integrated MECCA in other coastal areas.

Suggested Citation

  • Kankan Wu & Keliang Chen & Yu Gao & Shang Jiang & Haiping Huang, 2022. "Applying a Set of Potential Methods for the Integrated Assessment of the Marine Eco-Environmental Carrying Capacity in Coastal Areas," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4416-:d:788999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kan-Kan Wu & Luo-Ping Zhang, 2016. "Application of environmental risk assessment for strategic decision-making in coastal areas: case studies in China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(5), pages 826-842, May.
    2. Kan-Kan Wu & Luo-Ping Zhang & Qin-Hua Fang, 2014. "An Approach And Methodology Of Environmental Risk Assessment For Strategic Decision-Making," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-21.
    3. Sareh Hosseini & Jafar Oladi & Hamid Amirnejad, 2021. "The evaluation of environmental, economic and social services of national parks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9052-9075, June.
    4. Byron, Carrie & Link, Jason & Costa-Pierce, Barry & Bengtson, David, 2011. "Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island," Ecological Modelling, Elsevier, vol. 222(10), pages 1743-1755.
    5. Zhang, Z. & Lu, W.X. & Zhao, Y. & Song, W.B., 2014. "Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process," Ecological Modelling, Elsevier, vol. 275(C), pages 9-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofang Wu & Luoping Zhang & Huan Feng, 2019. "Green Strategic Planning Approach for International Shipping Activities," Sustainability, MDPI, vol. 12(1), pages 1-27, December.
    2. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    3. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    4. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    5. Teresa R. Johnson & Kate Beard & Damian C. Brady & Carrie J. Byron & Caitlin Cleaver & Kevin Duffy & Nicholas Keeney & Melissa Kimble & Molly Miller & Shane Moeykens & Mario Teisl & G. Peter van Walsu, 2019. "A Social-Ecological System Framework for Marine Aquaculture Research," Sustainability, MDPI, vol. 11(9), pages 1-20, April.
    6. Zhao, Yabo & Wang, Shaojian & Ge, Yuejing & Liu, Qianqian & Liu, Xiaofeng, 2017. "The spatial differentiation of the coupling relationship between urbanization and the eco-environment in countries globally: A comprehensive assessment," Ecological Modelling, Elsevier, vol. 360(C), pages 313-327.
    7. Gatmiry, Zohreh S. & Hafezalkotob, Ashkan & Khakzar bafruei, Morteza & Soltani, Roya, 2021. "Food web conservation vs. strategic threats: A security game approach," Ecological Modelling, Elsevier, vol. 442(C).
    8. Aiyong Lin & Yujia Liu & Shuling Zhou & Yajie Zhang & Cui Wang & Heping Ding, 2023. "Data-Driven Analysis and Evaluation of Regional Resources and the Environmental Carrying Capacity," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    9. Huatao Peng & Geert Duysters & Bert Sadowski, 2016. "The changing role of guanxi in influencing the development of entrepreneurial companies: a case study of the emergence of pharmaceutical companies in China," International Entrepreneurship and Management Journal, Springer, vol. 12(1), pages 215-258, March.
    10. Zhao, Yunxia & Zhang, Jihong & Lin, Fan & Ren, Jeffrey S. & Sun, Ke & Liu, Yi & Wu, Wenguang & Wang, Wei, 2019. "An ecosystem model for estimating shellfish production carrying capacity in bottom culture systems," Ecological Modelling, Elsevier, vol. 393(C), pages 1-11.
    11. Yi Lu & Xiangrong Wang & Yujing Xie & Kun Li & Yiyang Xu, 2016. "Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    12. Feng Zhou & Weici Su & Fengtai Zhang, 2019. "Influencing Indicators and Quantitative Assessment of Water Resources Security in Karst Region Based on PSER Model—The Case of Guizhou," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    13. Fangzheng Li & Yinan Sun & Xiong Li & Xinhua Hao & Wanyi Li & Yun Qian & Haimeng Liu & Haiyan Sun, 2016. "Research on the Sustainable Development of Green-Space in Beijing Using the Dynamic Systems Model," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
    14. Akopov, Andranik S. & Beklaryan, Levon A. & Saghatelyan, Armen K., 2017. "Agent-based modelling for ecological economics: A case study of the Republic of Armenia," Ecological Modelling, Elsevier, vol. 346(C), pages 99-118.
    15. Kluger, Lotta C. & Taylor, Marc H. & Mendo, Jaime & Tam, Jorge & Wolff, Matthias, 2016. "Carrying capacity simulations as a tool for ecosystem-based management of a scallop aquaculture system," Ecological Modelling, Elsevier, vol. 331(C), pages 44-55.
    16. Yujie Wei & Ran Wang & Xin Zhuo & Haoying Feng, 2021. "Research on Comprehensive Evaluation and Coordinated Development of Water Resources Carrying Capacity in Qingjiang River Basin, China," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    17. Zhang, Feng & Liu, Xingpeng & Zhang, Jiquan & Wu, Rina & Ma, Qiyun & Chen, Yanan, 2017. "Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China," Ecological Modelling, Elsevier, vol. 349(C), pages 41-50.
    18. Benhong Peng & Yuanyuan Wang & Ehsan Elahi & Guo Wei, 2018. "Evaluation and Prediction of the Ecological Footprint and Ecological Carrying Capacity for Yangtze River Urban Agglomeration Based on the Grey Model," IJERPH, MDPI, vol. 15(11), pages 1-14, November.
    19. María Camila Sánchez-Prieto & Antonio Luna-González & Alejandro Espinoza-Tenorio & Héctor Abelardo González-Ocampo, 2021. "Planning Ecotourism in Coastal Protected Areas; Projecting Temporal Management Scenarios," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    20. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4416-:d:788999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.