IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4289-d786893.html
   My bibliography  Save this article

Innovative Bacterial Removal Technique Using Green Synthetic Nano Curcumin Zinc (II) Complex for Sustainable Water Resource Management

Author

Listed:
  • Dhanu Radha Samayamanthula

    (Water Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait)

  • Badriyah Alhalaili

    (Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, Safat 13109, Kuwait)

  • Harinath Yapati

    (Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait)

  • Adnan Akber

    (Water Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait)

  • Chidambaram Sabarathinam

    (Water Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait)

Abstract

Sustainable management of water resources is a daunting challenge, especially with respect to microbes. This study primarily focused on the development of a novel application for the removal of specific bacterial groups in different water types using a green synthetic nano Cur-Zn(II) complex. The results of UV and FT-IR spectroscopic techniques suggested the formation of a chelation complex. Proton NMR showed that the main enolic proton peak with a chemical shift of 16.45 nm identified in curcumin was missed, indicating the contribution of carbonyl oxygen of enol in the formation of the complex. The crystalline nature of the complex and Wurtzite structure of annealed products was inferred from the XRD analysis data. SEM results confirmed the complex’s morphology as spherical and clustered with a rough surface, having an average particle size of 68.2 nm. In addition, the complex was observed to be stable up to 300 °C without any decomposition from STA. Being acidic in nature with a pH of 5.36, the complex penetrates into the cell membrane and inhibit microbial growth. Intrinsically, no studies have been reported for the removal of microbes from water using natural materials embedded with inorganic metals, particularly in nano form. Therefore, the study is the first, innovative, eco-friendly, and economical method to use nano Cur-Zn(II) for removing targeted bacteria in real water samples with 100% efficiency by using optimized amounts (0.025–0.2 g/L) of the complex at a contact time interval between 4 and 24 h. The complex developed is toxic-free and can be applied in situ.

Suggested Citation

  • Dhanu Radha Samayamanthula & Badriyah Alhalaili & Harinath Yapati & Adnan Akber & Chidambaram Sabarathinam, 2022. "Innovative Bacterial Removal Technique Using Green Synthetic Nano Curcumin Zinc (II) Complex for Sustainable Water Resource Management," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4289-:d:786893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mashhadikhan, Samaneh & Ahmadi, Reyhane & Ebadi Amooghin, Abtin & Sanaeepur, Hamidreza & Aminabhavi, Tejraj M. & Rezakazemi, Mashallah, 2024. "Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    3. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    4. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    5. Hamed Farahani & Mostafa Haghighi & Mohammad Mahdi Behvand Usefi & Mostafa Ghasemi, 2024. "Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells," Sustainability, MDPI, vol. 16(23), pages 1-27, November.
    6. Janeth Marwa & Mesia Lufingo & Chicgoua Noubactep & Revocatus Machunda, 2018. "Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    7. Lu Liu & Yuanxin Yao & Xuebing Zhou & Yanan Zhang & Deqing Liang, 2021. "Improved Formation Kinetics of Carbon Dioxide Hydrate in Brine Induced by Sodium Dodecyl Sulfate," Energies, MDPI, vol. 14(8), pages 1-12, April.
    8. Haneen Abdelrazeq & Majeda Khraisheh & Hafsa Mohammed Ashraf & Parisa Ebrahimi & Ansaruddin Kunju, 2021. "Sustainable Innovation in Membrane Technologies for Produced Water Treatment: Challenges and Limitations," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    9. Suárez, Francisco & Ruskowitz, Jeffrey A. & Tyler, Scott W. & Childress, Amy E., 2015. "Renewable water: Direct contact membrane distillation coupled with solar ponds," Applied Energy, Elsevier, vol. 158(C), pages 532-539.
    10. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    11. Maleki, Akbar & Khajeh, Morteza Gholipour & Rosen, Marc A., 2016. "Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach," Energy, Elsevier, vol. 114(C), pages 1120-1134.
    12. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    13. Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.
    14. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    15. Gong, Biyao & Yang, Huachao & Wu, Shenghao & Tian, Yikuan & Yan, Jianhua & Cen, Kefa & Bo, Zheng & Ostrikov, Kostya (Ken), 2021. "Phase change material enhanced sustained and energy-efficient solar-thermal water desalination," Applied Energy, Elsevier, vol. 301(C).
    16. Feng, Haodong & Yao, Ailing & Han, Qingyang & Zhang, Hailun & Jia, Lei & Sun, Wenxu, 2024. "Effect of droplets in the primary flow on ejector performance of MED-TVC systems," Energy, Elsevier, vol. 293(C).
    17. Li, Chaofan & Liu, Dongzhi & Zhang, Yalei & Li, Shuangfei & He, Deqiang & Chen, Yanjun, 2024. "Experimental study of electric field combined nanofluid to enhance vapor generation in the solar steam generator," Renewable Energy, Elsevier, vol. 237(PC).
    18. Wang, Yiping & Jin, Yanchao & Huang, Qunwu & Zhu, Li & Vivar, Marta & Qin, Lianwei & Sun, Yong & Cui, Yong & Cui, Lingyun, 2016. "Photovoltaic and disinfection performance study of a hybrid photovoltaic-solar water disinfection system," Energy, Elsevier, vol. 106(C), pages 757-764.
    19. Md Ekhlasur Rahman & Mohd Izuan Effendi Bin Halmi & Mohd Yusoff Bin Abd Samad & Md Kamal Uddin & Khairil Mahmud & Mohd Yunus Abd Shukor & Siti Rozaimah Sheikh Abdullah & S M Shamsuzzaman, 2020. "Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant," IJERPH, MDPI, vol. 17(22), pages 1-40, November.
    20. Wang, Qingmiao & Qin, Yi & Jia, Feifei & Li, Yanmei & Song, Shaoxian, 2021. "Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation," Renewable Energy, Elsevier, vol. 163(C), pages 146-153.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4289-:d:786893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.