IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3675-d776026.html
   My bibliography  Save this article

Quantifying the “Water–Carbon–Sulfur” Nexus for Coal Power Plants in China

Author

Listed:
  • Xin Liu

    (School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Shenzhen 518055, China)

  • Yiran Wei

    (School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Shenzhen 518055, China)

  • Junping Ji

    (School of Economics and Management, Harbin Institute of Technology, Shenzhen 518055, China)

Abstract

China has implemented strict policies for the installation of desulfurization facilities in coal power plants in order to mitigate their negative environmental and human health impacts. However, it is rarely acknowledged that desulfurization processes lead to increased water consumption and carbon emissions from the coal power sector. By using a bottom-up approach, we quantified that the desulfurization facilities in all of China’s coal power plants together avoided emissions of 29.52 Mt of SO 2 in 2014, with expenses of 550.26 million m 3 of increased water consumption, and 53.28 Mt of additional CO 2 emissions. Such conflicts were especially pronounced in the North China Grid, where 9.77 Mt of SO 2 emission reductions were realized at expenses of 132.15 million m 3 of water consumption, and 14.25 Mt of CO 2 emissions. The provinces in the North China Grid were already facing extreme water scarcity. Furthermore, while more than 90% of China’s coal power plants have installed desulfurization facilities, the application of full desulfurization would further reduce the greatest amount of SO 2 emissions with the smallest amounts of additional water consumption and carbon emissions in the Northwest Grid. Replacing all wet desulfurization facilities with dry ones saves 498.38 million m 3 of water consumption in total, and reduces 26.65 Mt of CO 2 emissions; however, this is at an expense of 14.33 Mt of SO 2 emissions. These conflicts are most pronounced in Shanxi Province in the North Grid, and in Guangdong Province in the South Grid.

Suggested Citation

  • Xin Liu & Yiran Wei & Junping Ji, 2022. "Quantifying the “Water–Carbon–Sulfur” Nexus for Coal Power Plants in China," Sustainability, MDPI, vol. 14(6), pages 1-10, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3675-:d:776026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling Tang & Jiabao Qu & Zhifu Mi & Xin Bo & Xiangyu Chang & Laura Diaz Anadon & Shouyang Wang & Xiaoda Xue & Shibei Li & Xin Wang & Xiaohong Zhao, 2019. "Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards," Nature Energy, Nature, vol. 4(11), pages 929-938, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Ce & Guo, Xiaodan & Tian, Ziyue & Xiao, Bowen, 2025. "Unintended consequences of SO2 mitigation: Increased PM and infant mortality in China," Energy Economics, Elsevier, vol. 144(C).
    2. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    3. Jiang, Xueting, 2022. "Drivers of air pollution reduction paradox: Empirical evidence from directly measured unit-level data of Chinese power plants," Energy, Elsevier, vol. 254(PB).
    4. Bin Hu & Cong Chen & Shouxi Jiang & Xiaosong Liu & Qianjin Dai, 2022. "Investigating the Optimization Design of Internal Flow Fields Using a Selective Catalytic Reduction Device and Computational Fluid Dynamics," Energies, MDPI, vol. 15(4), pages 1-17, February.
    5. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Li, Xinzhuo & Choi, Minsung & Jung, Chanho & Park, Yeseul & Choi, Gyungmin, 2022. "Effects of the staging position and air−LPG mixing ratio on the combustion and emission characteristics of coal and gas co-firing," Energy, Elsevier, vol. 254(PB).
    7. Ai, Hongshan & Tan, Xiaoqing & Mangla, Sachin Kumar & Emrouznejad, Ali & Liu, Fan & Song, Malin, 2025. "Renewable energy transition and sustainable development: Evidence from China," Energy Economics, Elsevier, vol. 143(C).
    8. Wang, Yihan & Wen, Zongguo & Lv, Xiaojun & Zhu, Junming, 2023. "The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target," Applied Energy, Elsevier, vol. 337(C).
    9. Yongrok Choi & Fan Yang & Hyoungsuk Lee, 2020. "On the Unbalanced Atmospheric Environmental Performance of Major Cities in China," Sustainability, MDPI, vol. 12(13), pages 1-14, July.
    10. Lingyan Xu & Fenglian Huang & Jianguo Du & Dandan Wang, 2020. "Decisions in Power Supply Chain with Emission Reduction Effort of Coal-Fired Power Plant under the Power Market Reform," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    11. Jianxin Guo & Xianchun Tan & Xiaoyan Meng & Yanping Li, 2022. "Clean technology investment considering synergistic effects: a case from the steel sintering process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13748-13770, December.
    12. Longwu Liang & Zhenbo Wang, 2021. "Control Models and Spatiotemporal Characteristics of Air Pollution in the Rapidly Developing Urban Agglomerations," IJERPH, MDPI, vol. 18(11), pages 1-16, June.
    13. Wang, Peng-Tao & Zhang, Yi-Xiang & Wang, Fei-Yin & Xu, Mao, 2025. "Carbon capture, utilization, and storage in China's high-emission industries: Optimal deployment under carbon neutrality goals," Energy, Elsevier, vol. 323(C).
    14. Li, Mingquan & Shan, Rui & Virguez, Edgar & Patiño-Echeverri, Dalia & Gao, Shuo & Ma, Haichao, 2022. "Energy storage reduces costs and emissions even without large penetration of renewable energy: The case of China Southern Power Grid," Energy Policy, Elsevier, vol. 161(C).
    15. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    16. Juliette Caucheteux & Sam Fankhauser & Sugandha Srivastav, 2025. "Climate Change Mitigation Policies for Developing Countries," Review of Environmental Economics and Policy, University of Chicago Press, vol. 19(1), pages 69-89.
    17. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    18. Zhang Wen & Xin Ma & Wen Xu & Ruotong Si & Lei Liu & Mingrui Ma & Yuanhong Zhao & Aohan Tang & Yangyang Zhang & Kai Wang & Ying Zhang & Jianlin Shen & Lin Zhang & Yu Zhao & Fusuo Zhang & Keith Gouldin, 2024. "Combined short-term and long-term emission controls improve air quality sustainably in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Di Wu & Haotian Zheng & Qing Li & Shuxiao Wang & Bin Zhao & Ling Jin & Rui Lyu & Shengyue Li & Yuzhe Liu & Xiu Chen & Fenfen Zhang & Qingru Wu & Tonghao Liu & Jingkun Jiang & Lin Wang & Xiangdong Li &, 2023. "Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Du, Qunyang & Xue, Mengzhe & Li, Zhongyuan & Min Du, Anna & Yang, Tianle, 2024. "Economic vulnerabilities and sustainability in energy utilities: Managing climate change in the face of geopolitical turmoil," Research in International Business and Finance, Elsevier, vol. 71(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3675-:d:776026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.