IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p3125-d766037.html
   My bibliography  Save this article

Carbon Footprint of a Typical Neapolitan Pizzeria

Author

Listed:
  • Aniello Falciano

    (Department of Agriculture, University of Naples Federico II, 80055 Portici, Italy)

  • Alessio Cimini

    (Department of for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia, 01100 Viterbo, Italy)

  • Paolo Masi

    (Department of Agriculture, University of Naples Federico II, 80055 Portici, Italy)

  • Mauro Moresi

    (Department of for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia, 01100 Viterbo, Italy)

Abstract

Neapolitan pizza is very popular worldwide and is registered on the traditional specialties guaranteed (TSG) list. This study was aimed at identifying the cradle-to-grave carbon footprint (CF) of a medium-sized pizza restaurant serving in situ or takeaway true Neapolitan pizzas conforming to the Publicly Available Specification (PAS) 2050 standard method. An average CF of ~4.69 kg CO 2e /diner was estimated, about 74% of which was due to the production of the ingredients used (with buffalo mozzarella cheese alone representing as much as 52% of CF). The contribution of beverages, packaging materials, transportation, and energy sources varied within 6.8 and 4.6% of CF. The percentage relative variation of CF with respect to its basic score was of about +26%, +4.4%, and +1.6% or +2.1%, provided that the emission factor of buffalo mozzarella, fresh cow mozzarella (fiordilatte), Grana Padano cheeses, and electricity varied by +50% with respect to each corresponding default value, respectively. The specific carbon footprint for Marinara pizza was equal to ~4 kg CO 2e /kg, while for Margherita pizza, it was up to 5.1, or 10.8 kg CO 2e /kg when topped with fresh cow or buffalo mozzarella cheese. To help pizza restaurant operators select the most rewarding mitigation strategy, we explored how CF was affected by more sustainable buffalo mozzarella cheese production, lighter and reusable containers for beer, mineral water, and main fresh vegetables, newer diesel-powered vans, less air-polluting electric ovens instead of traditional wood-fired ovens, as well as renewable electricity sources.

Suggested Citation

  • Aniello Falciano & Alessio Cimini & Paolo Masi & Mauro Moresi, 2022. "Carbon Footprint of a Typical Neapolitan Pizzeria," Sustainability, MDPI, vol. 14(5), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3125-:d:766037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/3125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/3125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Demichelis & Francesco Piovano & Silvia Fiore, 2019. "Biowaste Management in Italy: Challenges and Perspectives," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    2. Tricase, C. & Lombardi, M., 2009. "State of the art and prospects of Italian biogas production from animal sewage: Technical-economic considerations," Renewable Energy, Elsevier, vol. 34(3), pages 477-485.
    3. Shiv Prasad & Dhanya M S, 2011. "Air Quality and Biofuels," Chapters, in: Marco Aurelio Dos Santos Bernardes (ed.), Environmental Impact of Biofuels, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Troncoso-Pantoja & Paola Cáceres-Rodríguez & Antonio Amaya-Placencia & Claudia Lataste-Quintana & Rodrigo Valenzuela, 2023. "Exploring the Meanings of Food Sustainability: An Interpretive Phenomenological Analysis," Sustainability, MDPI, vol. 15(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    2. Francis Auguste Fleury Junior Dima & Zifu Li & Heinz-Peter Mang & Lixin Zhu, 2022. "Feasibility Analysis of Biogas Production by Using GIS and Multicriteria Decision Aid Methods in the Central African Republic," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    3. Nogueira, Carlos Eduardo Camargo & de Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Azevedo, Ricardo Lessa, 2015. "Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 300-305.
    4. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    5. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    6. Fabio G. Santeramo & Monica Delsignore & Enrica Imbert & Mariarosaria Lombardi, 2023. "The Future of the EU Bioenergy Sector: Economic, Environmental, Social, and Legislative Challenges," International Review of Environmental and Resource Economics, now publishers, vol. 17(1), pages 1-1–52, April.
    7. Furtado Amaral, Andre & Previtali, Daniele & Bassani, Andrea & Italiano, Cristina & Palella, Alessandra & Pino, Lidia & Vita, Antonio & Bozzano, Giulia & Pirola, Carlo & Manenti, Flavio, 2020. "Biogas beyond CHP: The HPC (heat, power & chemicals) process," Energy, Elsevier, vol. 203(C).
    8. P. Elaiyaraju & N. Partha, 2016. "Studies on biogas production by anaerobic process using agroindustrial wastes," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(2), pages 73-82.
    9. Nour El Houda Chaher & Safwat Hemidat & Qahtan Thabit & Mehrez Chakchouk & Abdallah Nassour & Moktar Hamdi & Michael Nelles, 2020. "Potential of Sustainable Concept for Handling Organic Waste in Tunisia," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
    10. Abdul Haseeb Khan Babar & Yousaf Ali & Amin Ullah Khan, 2021. "Moving toward green mobility: overview and analysis of electric vehicle selection, Pakistan a case in point," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10994-11011, July.
    11. Uusitalo, V. & Havukainen, J. & Soukka, R. & Väisänen, S. & Havukainen, M. & Luoranen, M., 2015. "Systematic approach for recognizing limiting factors for growth of biomethane use in transportation sector – A case study in Finland," Renewable Energy, Elsevier, vol. 80(C), pages 479-488.
    12. Weixun Lv & Yan Wu & Jianbin Zang, 2021. "A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures," Energies, MDPI, vol. 14(19), pages 1-21, September.
    13. Clovis Zapata & Paul Nieuwenhuis, 2009. "Driving on liquid sunshine – the Brazilian biofuel experience: a policy driven analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 18(8), pages 528-541, December.
    14. Turney, Damon & Fthenakis, Vasilis, 2011. "Environmental impacts from the installation and operation of large-scale solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3261-3270, August.
    15. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    16. Andrea Taffuri & Alessandro Sciullo & Arnaud Diemer & Claudiu Eduard Nedelciu, 2021. "Integrating Circular Bioeconomy and Urban Dynamics to Define an Innovative Management of Bio-Waste: The Study Case of Turin," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    17. Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom & Park, Jung Keuk, 2012. "The effect of firing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems," Applied Energy, Elsevier, vol. 93(C), pages 215-228.
    18. Maurizio Prosperi & Roberta Sisto & Mariarosaria Lombardi & Xueqin Zhu, 2018. "Production of bioplastics for agricultural purposes: A supply chain study," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2018(1), pages 119-136.
    19. Filoso, Solange & Carmo, Janaina Braga do & Mardegan, Sílvia Fernanda & Lins, Silvia Rafaela Machado & Gomes, Taciana Figueiredo & Martinelli, Luiz Antonio, 2015. "Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1847-1856.
    20. Nadaletti, W.C. & Cremonez, P.A. & de Souza, S.N.M. & Bariccatti, R.A. & Belli Filho, P. & Secco, D., 2015. "Potential use of landfill biogas in urban bus fleet in the Brazilian states: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 277-283.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3125-:d:766037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.