IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1771-d741845.html
   My bibliography  Save this article

Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria

Author

Listed:
  • Amor Fezzani

    (Unité de Recherche Appliquée en Energies Renouvelables (URAER), Centre de Développement des Energies Renouvelables (CDER), Ghardaia 47133, Algeria)

  • Idriss Hadj-Mahammed

    (Unité de Recherche Appliquée en Energies Renouvelables (URAER), Centre de Développement des Energies Renouvelables (CDER), Ghardaia 47133, Algeria)

  • Abdellah Kouzou

    (Laboratory of Applied Automation and Industrial Diagnostics (LAADI), Faculty of Science and Technology, Ziane Achour University, Djelfa 17000, Algeria
    Electrical and Electronics Engineering Department, Nisantasi University, Istanbul 34398, Turkey
    Institute for Electrical Drive Systems and Power Electronics, Technical University of Munich (TUM), 80333 Munich, Germany)

  • Layachi Zaghba

    (Unité de Recherche Appliquée en Energies Renouvelables (URAER), Centre de Développement des Energies Renouvelables (CDER), Ghardaia 47133, Algeria)

  • Said Drid

    (Department of Electrical Engineering, University of Batna 2, Batna 05000, Algeria)

  • Messaouda Khennane

    (Unité de Recherche Appliquée en Energies Renouvelables (URAER), Centre de Développement des Energies Renouvelables (CDER), Ghardaia 47133, Algeria)

  • Ralph Kennel

    (Institute for Electrical Drive Systems and Power Electronics, Technical University of Munich (TUM), 80333 Munich, Germany)

  • Mohamed Abdelrahem

    (Institute for Electrical Drive Systems and Power Electronics, Technical University of Munich (TUM), 80333 Munich, Germany
    Department of Electrical Engineering, Assiut University, Assiut 71516, Egypt)

Abstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Suggested Citation

  • Amor Fezzani & Idriss Hadj-Mahammed & Abdellah Kouzou & Layachi Zaghba & Said Drid & Messaouda Khennane & Ralph Kennel & Mohamed Abdelrahem, 2022. "Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1771-:d:741845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    2. Ustun, Taha Selim & Nakamura, Yasuhiro & Hashimoto, Jun & Otani, Kenji, 2019. "Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan," Renewable Energy, Elsevier, vol. 136(C), pages 159-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    2. Kim, Byungil & Kim, Changyoon, 2018. "Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1019-1024.
    3. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    4. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    5. Mathhar Bdour & Zakariya Dalala & Mohammad Al-Addous & Ashraf Radaideh & Aseel Al-Sadi, 2020. "A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    6. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    7. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    8. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    9. Maruthi Prasad, R. & Krishnamoorthy, A., 2018. "Design, construction, testing and performance of split power solar source using mirror photovoltaic glass for electric vehicles," Energy, Elsevier, vol. 145(C), pages 374-387.
    10. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    11. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    12. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2020. "Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid," Energies, MDPI, vol. 13(13), pages 1-12, July.
    13. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    14. Altegoer, D. & Hussong, J. & Lindken, R., 2022. "Efficiency increase of photovoltaic systems by means of evaporative cooling in a back-mounted chimney-like channel," Renewable Energy, Elsevier, vol. 191(C), pages 557-570.
    15. Macedon Moldovan & Bogdan Gabriel Burduhos & Ion Visa, 2023. "Efficiency Assessment of Five Types of Photovoltaic Modules Installed on a Fixed and on a Dual-Axis Solar-Tracked Platform," Energies, MDPI, vol. 16(3), pages 1-21, January.
    16. Abdulwahab A. Q. Hasan & Ammar Ahmed Alkahtani & Seyed Ahmad Shahahmadi & Mohammad Nur E. Alam & Mohammad Aminul Islam & Nowshad Amin, 2021. "Delamination-and Electromigration-Related Failures in Solar Panels—A Review," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    17. Belsky, A.A. & Glukhanich, D.Y. & Carrizosa, M.J. & Starshaia, V.V., 2022. "Analysis of specifications of solar photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
    20. Olga Pisani & Henri Diémoz & Claudio Cassardo, 2023. "Characterisation and Field Test of a Simple AvaSpec Array Spectroradiometer for Solar Irradiance Measurements at an Alpine Site," Energies, MDPI, vol. 16(7), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1771-:d:741845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.