IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15974-d988900.html
   My bibliography  Save this article

Effect of Plastic Waste on Volume Consumption of Landfill during the COVID-19 Pandemic

Author

Listed:
  • Sehneela Sara Aurpa

    (Department of Civil Engineering, The University of Texas at Arlington, 416 S Yates St., Arlington, TX 76019, USA)

  • Sahadat Hossain

    (Department of Civil Engineering, The University of Texas at Arlington, 416 S Yates St., Arlington, TX 76019, USA)

  • Md Azijul Islam

    (Department of Civil Engineering, The University of Texas at Arlington, 416 S Yates St., Arlington, TX 76019, USA)

Abstract

The COVID-19 pandemic has altered all aspects of human life since its breakout in March 2020 in the USA and around the world. There has been a tremendous increase in the use of plastic products as most of the PPE (masks, gloves, and other medical equipment) are made from plastic. Therefore, the generation of plastic waste was expected to increase significantly, which was also reported by many news agencies and organizations. This study determines the increase in plastic waste in municipal solid waste (MSW) and investigates its effect on landfill volume consumption during the COVID-19 pandemic. MSW samples were collected from the working face of Irving Hunter Ferrell landfill from May 2020 to December 2020. During every attempted sample collection, eight bags of MSW samples, each weighing 20–25 lbs., were collected. The MSW samples collected from the landfill were characterized and later the volume was estimated to evaluate the potential effects on landfill airspace. Based on the experimental investigations, it was found that plastic waste generation increased significantly during the pandemic (increasing from an 18.5% pre-pandemic level to 30% during the pandemic). Volumetric estimation suggests that the increased amount of plastic waste occupies 20% more volume in landfills. Quantification and estimation of the volume of the increased amount of plastic waste can be useful in predicting the impact of the pandemic on the lifetime of landfills.

Suggested Citation

  • Sehneela Sara Aurpa & Sahadat Hossain & Md Azijul Islam, 2022. "Effect of Plastic Waste on Volume Consumption of Landfill during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15974-:d:988900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klemeš, Jiří Jaromír & Fan, Yee Van & Tan, Raymond R. & Jiang, Peng, 2020. "Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veknesh Arumugam & Ismail Abdullah & Irwan Syah Md Yusoff & Nor Liza Abdullah & Ramli Mohd Tahir & Ahadi Mohd Nasir & Ammar Ehsan Omar & Muhammad Heikal Ismail, 2021. "The Impact of COVID-19 on Solid Waste Generation in the Perspectives of Socioeconomic and People’s Behavior: A Case Study in Serdang, Malaysia," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    2. Min Su & Qiang Wang & Rongrong Li, 2021. "How to Dispose of Medical Waste Caused by COVID-19? A Case Study of China," IJERPH, MDPI, vol. 18(22), pages 1-18, November.
    3. Teng, Sin Yong & Orosz, Ákos & How, Bing Shen & Jansen, Jeroen J. & Friedler, Ferenc, 2023. "Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping," Energy, Elsevier, vol. 283(C).
    4. Tomasz Wołowiec & Iuliia Myroshnychenko & Ihor Vakulenko & Sylwester Bogacki & Anna Maria Wiśniewska & Svitlana Kolosok & Vitaliy Yunger, 2022. "International Impact of COVID-19 on Energy Economics and Environmental Pollution: A Scoping Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    5. Zhong, Chao & Tan, Jiqiu & Zuo, Hongyan & Wu, Xin & Wang, Shaoli & Liu, Junan, 2021. "Synergy effects analysis on CDPF regeneration performance enhancement and NOx concentration reduction of NH3–SCR over Cu–ZSM–5," Energy, Elsevier, vol. 230(C).
    6. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    7. Mohannad Alkhraijah & Maad Alowaifeer & Mansour Alsaleh & Anas Alfaris & Daniel K. Molzahn, 2021. "The Effects of Social Distancing on Electricity Demand Considering Temperature Dependency," Energies, MDPI, vol. 14(2), pages 1-14, January.
    8. Walter Leal Filho & Amanda Lange Salvia & Arminda Paço & Celia Dias-Ferreira & Samara Neiva & Izabela Simon Rampasso & Rosley Anholon & Claudio Ruy Portela de Vasconcelos & João Henrique Paulino Pires, 2022. "Assessing the Connections between COVID-19 and Waste Management in Brazil," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
    9. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Kim, Dongwoo & Yim, Taesu & Lee, Jae Yong, 2021. "Analytical study on changes in domestic hot water use caused by COVID-19 pandemic," Energy, Elsevier, vol. 231(C).
    11. Masoomeh Zeinalnezhad & Abdoulmohammad Gholamzadeh Chofreh & Feybi Ariani Goni & Jiří Jaromír Klemeš & Emelia Sari, 2020. "Simulation and Improvement of Patients’ Workflow in Heart Clinics during COVID-19 Pandemic Using Timed Coloured Petri Nets," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    12. Emine Elmaslar Özbaş & Özcan Akın & Sinan Güneysu & H. Kurtuluş Özcan & Atakan Öngen, 2022. "Changes occurring in consumption habits of people during COVID-19 pandemic and the water footprint," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8504-8520, June.
    13. Pantelitsa Loizia & Irene Voukkali & Georgia Chatziparaskeva & Jose Navarro-Pedreño & Antonis A. Zorpas, 2021. "Measuring the Level of Environmental Performance on Coastal Environment before and during the COVID-19 Pandemic: A Case Study from Cyprus," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
    14. Jiang, Shiqi & Lin, Xinyue & Qi, Lingli & Zhang, Yongqiang & Sharp, Basil, 2022. "The macro-economic and CO2 emissions impacts of COVID-19 and recovery policies in China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 981-996.
    15. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    16. Jiang, Peng & Klemeš, Jiří Jaromír & Fan, Yee Van & Fu, Xiuju & Tan, Raymond R. & You, Siming & Foley, Aoife M., 2021. "Energy, environmental, economic and social equity (4E) pressures of COVID-19 vaccination mismanagement: A global perspective," Energy, Elsevier, vol. 235(C).
    17. Piotr Nowakowski & Sandra Kuśnierz & Patrycja Sosna & Jakub Mauer & Dawid Maj, 2020. "Disposal of Personal Protective Equipment during the COVID-19 Pandemic Is a Challenge for Waste Collection Companies and Society: A Case Study in Poland," Resources, MDPI, vol. 9(10), pages 1-11, September.
    18. Yan, Hongzhi & Hu, Bin & Wang, Ruzhu, 2021. "Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    20. Siddharthan Selvaraj & Somasundaram Prasadh & Shivkanya Fuloria & Vetriselvan Subramaniyan & Mahendran Sekar & Abdelmoty M. Ahmed & Belgacem Bouallegue & Darnal Hari Kumar & Vipin Kumar Sharma & Moham, 2022. "COVID-19 Biomedical Plastics Wastes—Challenges and Strategies for Curbing the Environmental Disaster," Sustainability, MDPI, vol. 14(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15974-:d:988900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.