IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13421-d945799.html
   My bibliography  Save this article

Path Planning of Electric VTOL UAV Considering Minimum Energy Consumption in Urban Areas

Author

Listed:
  • Yafei Li

    (School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China)

  • Minghuan Liu

    (School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China)

Abstract

As a new mode of transportation in the future, electric vertical take-off and landing unmanned aerial vehicles (eVTOL UAV) can undertake the task of logistics distribution and carry people in urban areas. It is challenging to carry out research designed to plan the path of eVTOL UAVs which can have a safe and sustainable operation mode in urban areas. Therefore, this work proposes a method for planning an obstacle-free path for eVTOL UAVs in urban areas with the goal of minimizing energy consumption. It aims to improve the safety and sustainability of eVTOL UAV operations. Based on variations of air density with height, a more accurate formula for calculating battery energy consumption of eVTOL UAV is derived. It is used in the vertical takeoff and landing phase and horizontal flight phase, respectively. Considering the influence of buildings on eVTOL UAV operation, a path planning method applicable to complex urban environments is proposed. The safe nodes of eVTOL UAV flight are obtained by using Voronoi diagrams based on building locations. Then, the complete shortest and obstacle-free path is obtained by using a Dubins geometric path and Floyd algorithm. After obtaining the obstacle-free paths for all flight height zones, the battery energy consumption of the eVTOL UAV in each flight height zone is calculated. Then, the flight height with the minimum energy consumption is obtained. The simulation results show that the path length obtained by the proposed path planning method is shorter than that obtained by particle swarm optimization; the total battery energy consumption changes in the same pattern in the low-altitude areas and high-altitude areas; the difference between the maximum and minimum energy consumption in the small area enables the eVTOL UAV to cover about 350 m more, and about 420 m more in the large area. Therefore, in future high-frequency UAV mission flights, choosing the altitude with the lowest energy consumption can reduce UAV operator costs. It can also significantly increase UAV transport range and make UAVs operate more sustainably.

Suggested Citation

  • Yafei Li & Minghuan Liu, 2022. "Path Planning of Electric VTOL UAV Considering Minimum Energy Consumption in Urban Areas," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13421-:d:945799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Han & Xinyue Yang & Yifei Zhao & Xiangmin Guan & Shengjie Wang, 2022. "Quantitative Ground Risk Assessment for Urban Logistical Unmanned Aerial Vehicle (UAV) Based on Bayesian Network," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    2. repec:cdl:itsrrp:qt8nh0s83q is not listed on IDEAS
    3. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Honggang & Liu, Zhiyuan & Dong, Yu & Zhou, Hongyue & Liu, Pan & Chen, Jun, 2024. "A novel network equilibrium model integrating urban aerial mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    2. Honghai Zhang & Tian Tian & Ouge Feng & Shixin Wu & Gang Zhong, 2023. "Research on Public Air Route Network Planning of Urban Low-Altitude Logistics Unmanned Aerial Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    3. Yiwei Na & Yulong Li & Danqiang Chen & Yongming Yao & Tianyu Li & Huiying Liu & Kuankuan Wang, 2023. "Optimal Energy Consumption Path Planning for Unmanned Aerial Vehicles Based on Improved Particle Swarm Optimization," Sustainability, MDPI, vol. 15(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    2. Abdeljawed Sadok & Jalel Euchi & Patrick Siarry, 2025. "Vehicle routing with multiple UAVs for the last-mile logistics distribution problem: hybrid distributed optimization," Annals of Operations Research, Springer, vol. 351(1), pages 59-99, August.
    3. Li, Hao & Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Zhao, Yue & Amihere, Samuel, 2024. "Fixed Automated stations location and UAVs routing problems in urban road Networks: A tailored Branch-&-price algorithm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    4. Ramadhan, Fadillah & Irawan, Chandra Ade & Salhi, Said & Cai, Zhao, 2025. "The truck traveling salesman problem with drone and boat for humanitarian relief distribution in flood disaster: Mathematical model and solution methods," European Journal of Operational Research, Elsevier, vol. 322(1), pages 270-291.
    5. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development," Post-Print hal-04381308, HAL.
    6. Nguyen, Minh Anh & Dang, Giang Thi-Huong & Hà, Minh Hoàng & Pham, Minh-Trien, 2022. "The min-cost parallel drone scheduling vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 910-930.
    7. Johannes Schmidt & Armin Fügenschuh, 2023. "A two-time-level model for mission and flight planning of an inhomogeneous fleet of unmanned aerial vehicles," Computational Optimization and Applications, Springer, vol. 85(1), pages 293-335, May.
    8. Mian Ye & Jinchen Zhao & Quanli Guan & Xuejun Zhang, 2024. "Research on eVTOL Air Route Network Planning Based on Improved A* Algorithm," Sustainability, MDPI, vol. 16(2), pages 1-30, January.
    9. Snežana Tadić & Mladen Krstić & Miloš Veljović & Olja Čokorilo & Milica Milovanović, 2024. "Risk Analysis of the Use of Drones in City Logistics," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    10. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Cai, Lei & Li, Jiliu & Wang, Kai & Luo, Zhixing & Qin, Hu, 2025. "Optimal allocation and route design for station-based drone inspection of large-scale facilities," Omega, Elsevier, vol. 130(C).
    12. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    14. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).
    15. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Yang, Ying & Hao, Xiaodeng & Wang, Shuaian, 2025. "The drone scheduling problem in shore-to-ship delivery: A time discretization-based model with an exact solving approach," Transportation Research Part B: Methodological, Elsevier, vol. 191(C).
    17. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    18. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    19. Wenjiao Zai & Junjie Wang & Guohui Li, 2023. "A Drone Scheduling Method for Emergency Power Material Transportation Based on Deep Reinforcement Learning Optimized PSO Algorithm," Sustainability, MDPI, vol. 15(17), pages 1-29, August.
    20. Hongbo He & Xiaohan Liao & Huping Ye & Chenchen Xu & Huanyin Yue, 2023. "Data-Driven Insights into Population Exposure Risks: Towards Sustainable and Safe Urban Airspace Utilization by Unmanned Aerial Systems," Sustainability, MDPI, vol. 15(16), pages 1-20, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13421-:d:945799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.