IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12101-d924369.html
   My bibliography  Save this article

Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model

Author

Listed:
  • François Sprumont

    (Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2, Avenue de l’Université, Esch-sur-Alzette, L-4365 Luxembourg, Luxembourg)

  • Ariane Scheffer

    (MobiLab Transport Research Group, Research Unit of Engineering Science, University of Luxembourg, 6, Avenue de la Fonte, Esch-sur-Alzette, L-4364 Luxembourg, Luxembourg)

  • Geoffrey Caruso

    (Urban Development & Mobility Department, Luxembourg Institute of Socio-Economic Research (LISER), 11, Porte des Sciences, Esch-sur-Alzette, L-4366 Luxembourg, Luxembourg)

  • Eric Cornelis

    (Transportation Research Group (GRT), Université de Namur, Rue de Bruxelles 615, 5000 Namur, Belgium)

  • Francesco Viti

    (MobiLab Transport Research Group, Research Unit of Engineering Science, University of Luxembourg, 6, Avenue de la Fonte, Esch-sur-Alzette, L-4364 Luxembourg, Luxembourg)

Abstract

This paper studies the relationship between activity pattern complexity and car use using two multi-day surveys involving the same participants but collected just before and about one year after they relocated their workplace. Measurable characteristics related to two latent variables, namely activity pattern complexity, or trip chaining (e.g., number of activities done within and outside the home–work tour), and to car use (e.g., usage rate, distance travelled by car) were selected. The study shows that the methodology adopted, partial least square structural equation modelling, quantifies the relation between the two variables, and is robust towards changes in important contextual characteristics of the individuals, namely workplace location. The findings indicate that the number of activities chained to commuting travels strongly impact mode choice and, in particular, car use. The paper also shows that chaining non-work-related activities has a stronger impact on car use. The results of this study suggest that planning and management solutions aimed at reducing car use, but focusing only on the commuting trip while neglecting the impact of other daily activities, may be less effective than expected.

Suggested Citation

  • François Sprumont & Ariane Scheffer & Geoffrey Caruso & Eric Cornelis & Francesco Viti, 2022. "Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12101-:d:924369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    3. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    4. Lee, Ming S. & McNally, Michael G., 2003. "On the structure of weekly activity/travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 823-839, December.
    5. Lee, Ming S. & McNally, Michael G., 2003. "On the Structure of Weekly Activity/Travel Patterns," University of California Transportation Center, Working Papers qt15w464vp, University of California Transportation Center.
    6. Albert Satorra, 1990. "Robustness issues in structural equation modeling: a review of recent developments," Quality & Quantity: International Journal of Methodology, Springer, vol. 24(4), pages 367-386, November.
    7. Thomas Vanoutrive, 2014. "Workplace travel plans: can they be evaluated effectively by experts?," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(8), pages 757-774, December.
    8. Vande Walle, Stefaan & Steenberghen, Therese, 2006. "Space and time related determinants of public transport use in trip chains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 151-162, February.
    9. De Witte, Astrid & Hollevoet, Joachim & Dobruszkes, Frédéric & Hubert, Michel & Macharis, Cathy, 2013. "Linking modal choice to motility: A comprehensive review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 329-341.
    10. Arun Kuppam & Ram Pendyala, 2001. "A structural equations analysis of commuters' activity and travel patterns," Transportation, Springer, vol. 28(1), pages 33-54, February.
    11. Coltman, Tim & Devinney, Timothy M. & Midgley, David F. & Venaik, Sunil, 2008. "Formative versus reflective measurement models: Two applications of formative measurement," Journal of Business Research, Elsevier, vol. 61(12), pages 1250-1262, December.
    12. Urbi Banerjee & Julian Hine, 2016. "Interpreting the influence of urban form on household car travel using partial least squares structural equation modelling: some evidence from Northern Ireland," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(1), pages 24-44, February.
    13. David Hensher & April Reyes, 2000. "Trip chaining as a barrier to the propensity to use public transport," Transportation, Springer, vol. 27(4), pages 341-361, December.
    14. Bhat, Chandra, 1999. "An analysis of evening commute stop-making behavior using repeated choice observations from a multi-day survey," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 495-510, September.
    15. Astrid De Witte & Joachim Hollevoet & Frédéric Dobruszkes & Michel Hubert & Cathy Macharis, 2013. "Linking modal choice to motility: a comprehensive review," ULB Institutional Repository 2013/138176, ULB -- Universite Libre de Bruxelles.
    16. Krygsman, Stephan & Arentze, Theo & Timmermans, Harry, 2007. "Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 913-933, December.
    17. Lu, Xuedong & Pas, Eric I., 1999. "Socio-demographics, activity participation and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 1-18, January.
    18. Veronique Van Acker & Frank Witlox & Bert Van Wee, 2007. "The Effects of the Land Use System on Travel Behavior: A Structural Equation Modeling Approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(4), pages 331-353, May.
    19. Necmi K. Avkiran & Christian M. Ringle (ed.), 2018. "Partial Least Squares Structural Equation Modeling," International Series in Operations Research and Management Science, Springer, number 978-3-319-71691-6, September.
    20. Zhou, Jiangping, 2012. "Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1013-1029.
    21. Vale, David S., 2013. "Does commuting time tolerance impede sustainable urban mobility? Analysing the impacts on commuting behaviour as a result of workplace relocation to a mixed-use centre in Lisbon," Journal of Transport Geography, Elsevier, vol. 32(C), pages 38-48.
    22. Thorhauge, Mikkel & Kassahun, Habtamu Tilahun & Cherchi, Elisabetta & Haustein, Sonja, 2020. "Mobility needs, activity patterns and activity flexibility: How subjective and objective constraints influence mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 255-272.
    23. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Jiang & Jiaorong Wu & Xiaochun Zhang & Maopeng Sun & Shu Chen, 2023. "Association of the Built Environment with Residents’ Car Dependence: Evidence from Shenzhen, China," Sustainability, MDPI, vol. 15(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    2. Rafiq, Rezwana & McNally, Michael G., 2020. "An empirical analysis and policy implications of work tours utilizing public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 237-259.
    3. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    4. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    5. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    6. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    7. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    8. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    9. Krygsman, Stephan & Arentze, Theo & Timmermans, Harry, 2007. "Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 913-933, December.
    10. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    11. Timothée Cuignet & Camille Perchoux & Geoffrey Caruso & Olivier Klein & Sylvain Klein & Basile Chaix & Yan Kestens & Philippe Gerber, 2020. "Mobility among older adults: Deconstructing the effects of motility and movement on wellbeing," Urban Studies, Urban Studies Journal Limited, vol. 57(2), pages 383-401, February.
    12. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    13. Jonas De Vos & Long Cheng & Frank Witlox, 2021. "Do changes in the residential location lead to changes in travel attitudes? A structural equation modeling approach," Transportation, Springer, vol. 48(4), pages 2011-2034, August.
    14. Huang, Yuqiao & Gao, Linjie & Ni, Anning & Liu, Xiaoning, 2021. "Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Zahra Zarabi & Philippe Gerber & Sébastien Lord, 2019. "Travel Satisfaction vs. Life Satisfaction: A Weighted Decision-Making Approach," Sustainability, MDPI, vol. 11(19), pages 1-28, September.
    16. Xin Guan & Xin Ye & Cheng Shi & Yajie Zou, 2019. "A Multivariate Modeling Analysis of Commuters’ Non-Work Activity Allocations in Xiaoshan District of Hangzhou, China," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    17. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    18. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
    19. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    20. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12101-:d:924369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.