IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11714-d918264.html
   My bibliography  Save this article

Intermodal Green p-Hub Median Problem with Incomplete Hub-Network

Author

Listed:
  • El Mehdi Ibnoulouafi

    (Faculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2, 9000 Gent, Belgium
    TICLab, College of Engineering & Architecture, International University of Rabat, Rabat 11100, Morocco)

  • Mustapha Oudani

    (TICLab, College of Engineering & Architecture, International University of Rabat, Rabat 11100, Morocco)

  • Tarik Aouam

    (Faculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2, 9000 Gent, Belgium
    Africa Business School, Mohammed VI Polytechnic University, Rabat 10112, Morocco)

  • Mounir Ghogho

    (TICLab, College of Engineering & Architecture, International University of Rabat, Rabat 11100, Morocco)

Abstract

In the literature, hub-networks have often been modeled such as only one mode is considered for all transportation. Also, the consolidated demand flows are assumed to be transferred directly between each origin-destination hub pairs. The previous assumptions impose restrictions on the practical applications of such hub-networks. In fact, various transport modes are usually retained for freight transport, and intermodal terminals (e.g., rail terminals) may not realistically be fully connected. Thus, to assist decision makers, we investigate if the appropriate use of more eco-friendly transportation modes in incomplete networks may contribute to the accomplishment of the significant global reduction goals in carbon emissions. In this paper, we study the intermodal green p-hub median problem with incomplete hub-network. For each p located hub nodes, the hub-network is connected by at most q hub-links. The objective is to minimize the total transportation-based CO 2 emission costs incurred through the road- and rail-transportation of each o-d demand flows. We present a MILP formulation for the studied problem and propose a novel genetic algorithm to solve it. A penalty cost is considered on solutions where train capacity is exceeded. Additionally, we present a best-path construction heuristic to generate the initial population. Furthermore, we develop a demand flows routing heuristic to efficiently determine the partition of demand flows in the incomplete road-rail network. And we implement novel crossover and mutation operators to produce new off-springs. Extensive computational experiments show that the proposed solution approach outperforms the exact solver CPLEX. Also, we perform a comparison between the unimodal and intermodal cases, and offer a discussion on the tuning of freight trains.

Suggested Citation

  • El Mehdi Ibnoulouafi & Mustapha Oudani & Tarik Aouam & Mounir Ghogho, 2022. "Intermodal Green p-Hub Median Problem with Incomplete Hub-Network," Sustainability, MDPI, vol. 14(18), pages 1-29, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11714-:d:918264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirschstein, Thomas & Meisel, Frank, 2015. "GHG-emission models for assessing the eco-friendliness of road and rail freight transports," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 13-33.
    2. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    3. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part I---Introduction and Results," Management Science, INFORMS, vol. 51(10), pages 1540-1555, October.
    4. Gelareh, Shahin & Nickel, Stefan, 2011. "Hub location problems in transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1092-1111.
    5. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    6. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    7. Kara, Bahar Y. & Tansel, Barbaros C., 2000. "On the single-assignment p-hub center problem," European Journal of Operational Research, Elsevier, vol. 125(3), pages 648-655, September.
    8. Agnieszka Szmelter-Jarosz & Javid Ghahremani-Nahr & Hamed Nozari, 2021. "A Neutrosophic Fuzzy Optimisation Model for Optimal Sustainable Closed-Loop Supply Chain Network during COVID-19," JRFM, MDPI, vol. 14(11), pages 1-22, November.
    9. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    10. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2009. "The design of single allocation incomplete hub networks," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 936-951, December.
    11. Salhi, Said & Rand, Graham K., 1989. "The effect of ignoring routes when locating depots," European Journal of Operational Research, Elsevier, vol. 39(2), pages 150-156, March.
    12. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    13. S Alumur & B Y Kara, 2009. "A hub covering network design problem for cargo applications in Turkey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1349-1359, October.
    14. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    15. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    16. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part II---Formulations and Optimal Algorithms," Management Science, INFORMS, vol. 51(10), pages 1556-1571, October.
    17. Dukkanci, Okan & Peker, Meltem & Kara, Bahar Y., 2019. "Green hub location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 116-139.
    18. M-G Yoon & J Current, 2008. "The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 80-89, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    2. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    3. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    4. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    5. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    6. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    7. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    8. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    9. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    10. Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Regenerator Location Problem and survivable extensions: A hub covering location perspective," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 32-55.
    11. Zhang, Haifeng & Yang, Kai & Gao, Yuan & Yang, Lixing, 2022. "Accelerating Benders decomposition for stochastic incomplete multimodal hub location problem in many-to-many transportation and distribution systems," International Journal of Production Economics, Elsevier, vol. 248(C).
    12. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    13. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    14. Gelareh, Shahin & Neamatian Monemi, Rahimeh & Nickel, Stefan, 2015. "Multi-period hub location problems in transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 67-94.
    15. Trung Hieu Tran & Jesse R. O’Hanley & M. Paola Scaparra, 2017. "Reliable Hub Network Design: Formulation and Solution Techniques," Transportation Science, INFORMS, vol. 51(1), pages 358-375, February.
    16. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2009. "The design of single allocation incomplete hub networks," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 936-951, December.
    17. Jayaswal, Sachin & Vidyarthi, Navneet, 2023. "Multiple allocation hub location with service level constraints for two shipment classes," European Journal of Operational Research, Elsevier, vol. 309(2), pages 634-655.
    18. Yuan, Yun & Yu, Jie, 2018. "Locating transit hubs in a multi-modal transportation network: A cluster-based optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 85-103.
    19. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Zühal Kartal & Mohan Krishnamoorthy & Andreas T. Ernst, 2019. "Heuristic algorithms for the single allocation p-hub center problem with routing considerations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 99-145, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11714-:d:918264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.