IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11633-d916681.html
   My bibliography  Save this article

CA-BASNet: A Building Extraction Network in High Spatial Resolution Remote Sensing Images

Author

Listed:
  • Liang Huang

    (Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Center for Geo-Informatics Technology Surveying and Mapping in the Plateau Mountains of Yunnan Higher Education, Kunming 650093, China)

  • Juanjuan Zhu

    (Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Mulan Qiu

    (Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Xiaoxiang Li

    (Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Shasha Zhu

    (Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

Aiming at the problems of holes, misclassification, and rough edge segmentation in building extraction results from high spatial remote sensing images, a coordinate attention mechanism fusion network based on the BASNet network (CA-BASNet) is designed for building extraction in high spatial remote sensing images. Firstly, the deeply supervised encoder–decoder network was used to create a rough extract of buildings; secondly, to make the network pay more attention to learning building edge features, the mixed loss function composed of binary cross entropy, structural similarity and intersection-over-union was introduced into the network training process; finally, the residual optimization module of fusion coordinate attention mechanism was used for post-processing to realize the fine extraction of buildings from high spatial resolution remote sensing images. Experiments on the WHU building dataset show that the proposed network can achieve mIoU of 93.43%, mPA of 95.86%, recall of 98.79%, precision of 90.13% and F1 of 91.35%. Compared with the existing semantic segmentation networks, such as PSPNet, SegNet, DeepLapV3, SE-UNet, and UNet++, the accuracy of the proposed network and the integrity of object edge segmentation are significantly improved, which proves the effectiveness of the proposed network.

Suggested Citation

  • Liang Huang & Juanjuan Zhu & Mulan Qiu & Xiaoxiang Li & Shasha Zhu, 2022. "CA-BASNet: A Building Extraction Network in High Spatial Resolution Remote Sensing Images," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11633-:d:916681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daoyuan Zheng & Jianing Kang & Kaishun Wu & Yuting Feng & Han Guo & Xiaoyun Zheng & Shengwen Li & Fang Fang, 2023. "Semi-Supervised Building Detection from High-Resolution Remote Sensing Imagery," Sustainability, MDPI, vol. 15(15), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    2. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    3. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    4. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    5. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    7. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    9. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    10. Anastasia Spiliopoulou & Ioannis Papamichail & Markos Papageorgiou & Yannis Tyrinopoulos & John Chrysoulakis, 2017. "Macroscopic traffic flow model calibration using different optimization algorithms," Operational Research, Springer, vol. 17(1), pages 145-164, April.
    11. Zhang, Yali & Shang, Pengjian, 2019. "Multivariate multiscale distribution entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 72-80.
    12. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    13. A. Gouda & T. Szántai, 2008. "Rare event probabilities in stochastic networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 441-461, December.
    14. Reuven Y. Rubinstein, 2006. "How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 5-51, March.
    15. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    16. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Wu, Xin & Nie, Lei & Xu, Meng, 2017. "Robust fuzzy quality function deployment based on the mean-end-chain concept: Service station evaluation problem for rail catering services," European Journal of Operational Research, Elsevier, vol. 263(3), pages 974-995.
    18. Xianmin Wang & Xinlong Zhang & Jia Bi & Xudong Zhang & Shiqiang Deng & Zhiwei Liu & Lizhe Wang & Haixiang Guo, 2022. "Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning," IJERPH, MDPI, vol. 19(21), pages 1-26, October.
    19. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Rishang Long & Jianhua Zhang, 2016. "Risk Assessment Method of UHV AC/DC Power System under Serious Disasters," Energies, MDPI, vol. 10(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11633-:d:916681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.