IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11492-d914206.html
   My bibliography  Save this article

Experimental and Numerical Prediction of Wetting Fronts Size Created by Sub-Surface Bubble Irrigation System

Author

Listed:
  • Yasir L. Alrubaye

    (Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Badronnisa Yusuf

    (Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Thamer A. Mohammad

    (Department of Water Resources Engineering, College of Engineering, University of Baghdad, Baghdad 10070, Iraq)

  • Haslinda Nahazanan

    (Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Mohamed Azwan Mohamed Zawawi

    (Department of Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia)

Abstract

A bubble irrigation system (BIS) is a subsurface irrigation method recently introduced that may provide a better mechanism in terms of flow regulation, as it involves mainly the exchange of water and air bubbles under slight negative pressure. The negative pressure flow was created using inverted closed plastic bottles (ICPB) that connected to an elevated closed tank. Understanding the characteristics of wetting fronts is key in designing this irrigation system. This paper mainly presents the principles of BIS, the experimental measurements and software simulation of BIS wetting patterns, and the development of statistical models for BIS wetting patterns dimensions estimation. Laboratory experiments were accomplished to measure the BIS’s sharp-wetting fronts variation with four diameters of contact areas of ICPB and two different soil types, namely SS1 and SS2. In addition, numerical simulations using a 2D HYDRUS were performed to explore the possibility of using the simulated non-sharp wetting fronts in predicting BIS wetting fronts. The experimental results and numerical simulations show that the soil properties and the area of contact have a significant impact on the bubble flow rate and the shape and size of the wetting patterns. The hydraulic conductivity and the density of soil SS2, which were 62 and 22 percent, respectively, higher than soil SS1, have resulted in average incremental ratios of wetted depth and width by 94 and 178 percent, respectively. Results also show that more than 50 percent of the growth of wetting fronts’ width and depth occurred rapidly at the early portion of irrigation time before flattening at the latter time, indicating the effectiveness of the air–water exchange in regulating the amount of water supplied and in controlling wetting fronts propagation. Furthermore, based on experimental and simulation results, regression models have been developed for estimation of bubble flow rates and the size of wetting fronts. The developed models can be reliably used to predict the bubble flow rate and size of wetting patterns with high accuracy.

Suggested Citation

  • Yasir L. Alrubaye & Badronnisa Yusuf & Thamer A. Mohammad & Haslinda Nahazanan & Mohamed Azwan Mohamed Zawawi, 2022. "Experimental and Numerical Prediction of Wetting Fronts Size Created by Sub-Surface Bubble Irrigation System," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11492-:d:914206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    2. Kisi, Ozgur & Khosravinia, Payam & Heddam, Salim & Karimi, Bakhtiar & Karimi, Nazir, 2021. "Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: Adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – Gravity search algor," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Lima, Valeria & Keitel, Claudia & Sutton, Bruce & Leslie, Gregory, 2019. "Improved water management using subsurface membrane irrigation during cultivation of Phaseolus vulgaris," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Elmaloglou, S. & Diamantopoulos, E., 2009. "Simulation of soil water dynamics under subsurface drip irrigation from line sources," Agricultural Water Management, Elsevier, vol. 96(11), pages 1587-1595, November.
    5. Ren, ChangJiang & Zhao, Yong & Dan, Bai & Wang, Jianhua & Gong, JiaGuo & He, GuoHua, 2018. "Lateral hydraulic performance of subsurface drip irrigation based on spatial variability of soil: experiment," Agricultural Water Management, Elsevier, vol. 204(C), pages 118-125.
    6. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Nazari, Ehsan & Besharat, Sina & Zeinalzadeh, Kamran & Mohammadi, Adel, 2021. "Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    4. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    5. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Mingjie Qian & Wenxiang Zhou & Shufei Wang & Yuting Li & Yingui Cao, 2022. "The Influence of Soil Erodibility and Saturated Hydraulic Conductivity on Soil Nutrients in the Pingshuo Opencast Coalmine, China," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    7. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    8. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Nogueira, Virgílio Henrique Barros & Diotto, Adriano Valentim & Thebaldi, Michael Silveira & Colombo, Alberto & Silva, Yasmin Fernandes & Lima, Elvis Marcio de Castro & Resende, Gabriel Felipe Lima, 2021. "Variation in the flow rate of drip emitters in a subsurface irrigation system for different soil types," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Penny, Jessica & Ordens, Carlos M. & Barnett, Steve & Djordjević, Slobodan & Chen, Albert S., 2023. "Vineyards, vegetables or business-as-usual? Stakeholder-informed land use change modelling to predict the future of a groundwater-dependent prime-wine region under climate change," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Wang, Ce & Ye, Jinyang & Zhai, Yaming & Kurexi, Wuerkaixi & Xing, Dong & Feng, Genxiang & Zhang, Qun & Zhang, Zhanyu, 2023. "Dynamics of Moistube discharge, soil-water redistribution and wetting morphology in response to regulated working pressure heads," Agricultural Water Management, Elsevier, vol. 282(C).
    12. Zong, Rui & Han, Yue & Tan, Mingdong & Zou, Ruihan & Wang, Zhenhua, 2022. "Migration characteristics of soil salinity in saline-sodic cotton field with different reclamation time in non-irrigation season," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Ni Gao & Yan Mo & Jiandong Wang & Luhua Yang & Shihong Gong, 2022. "Effects of Flow Path Geometrical Parameters on the Hydraulic Performance of Variable Flow Emitters at the Conventional Water Supply Stage," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    14. Mahmoudi, Neda & Majidi, Arash & Jamei, Mehdi & Jalali, Mohammadnabi & Maroufpoor, Saman & Shiri, Jalal & Yaseen, Zaher Mundher, 2022. "Mutating fuzzy logic model with various rigorous meta-heuristic algorithms for soil moisture content estimation," Agricultural Water Management, Elsevier, vol. 261(C).
    15. Vidana Gamage, D.N. & Biswas, A. & Strachan, I.B., 2018. "Actively heated fiber optics method to monitor three-dimensional wetting patterns under drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 243-251.
    16. Zahra Jafari & Sayed Hamid Matinkhah & Mohammad Reza Mosaddeghi, 2022. "Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5335-5352, November.
    17. Yunquan Zhang & Peiling Yang, 2023. "A Simulation-Based Optimization Model for Control of Soil Salinization in the Hetao Irrigation District, Northwest China," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    18. Jun Zhang & Lin Li, 2022. "Spatial and Temporal Characteristics of Infiltration Wetting Front of Ring-Shaped Root Emitters," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    19. Elmaloglou, S. & Diamantopoulos, E. & Dercas, N., 2010. "Comparing soil moisture under trickle irrigation modeled as a point and line source," Agricultural Water Management, Elsevier, vol. 97(3), pages 426-432, March.
    20. Appels, Willemijn M. & Karimi, Rezvan, 2021. "Analysis of soil wetting patterns in subsurface drip irrigation systems – Indoor alfalfa experiments," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11492-:d:914206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.