IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10615-d897829.html
   My bibliography  Save this article

Prospects of Precipitation Based on Reconstruction over the Last 2000 Years in the Qilian Mountains

Author

Listed:
  • Lulu Qi

    (State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, No. 320, Donggang West Road, Chengguan District, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhilong Guo

    (State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, No. 320, Donggang West Road, Chengguan District, Lanzhou 730000, China)

  • Zhongxiang Qi

    (Warming High-Tech (Beijing) Co., Ltd., Beijing 100190, China)

  • Jijun Guo

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730031, China)

Abstract

The prospect of precipitation is of great significance to the distribution of industry and agriculture in Northwest China. The cycle characteristics of temperature and precipitation in the Qilian Mountains were identified by complex Morlet wavelet analysis and were simulated with sine functions. The results indicate that the main cycle of 200 years modulates the variations of temperature and precipitation over the past 2000 years and that cycle simulations fluctuate around the long-term trend. The temperature in the Qilian Mountains exhibits an obvious upward trend during the period 1570–1990 AD, while the precipitation trend shows a slight increase. The “wet-island” moisture pattern of the Qilian Mountains may be responsible for this. The moisture of the Qilian Mountains is principally sourced from the evapotranspiration of adjacent arid and semi-arid areas and is controlled by regional climate. The precipitation is close to the relative maximum and is at the positive phase of main cycle. It may not be beyond 400 mm in the next 200-year cycle, and the increment of precipitation might result from regional climate change.

Suggested Citation

  • Lulu Qi & Zhilong Guo & Zhongxiang Qi & Jijun Guo, 2022. "Prospects of Precipitation Based on Reconstruction over the Last 2000 Years in the Qilian Mountains," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10615-:d:897829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    2. Holger Braun & Marcus Christl & Stefan Rahmstorf & Andrey Ganopolski & Augusto Mangini & Claudia Kubatzki & Kurt Roth & Bernd Kromer, 2005. "Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model," Nature, Nature, vol. 438(7065), pages 208-211, November.
    3. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    4. Ying-Hui Shao & Gao Feng Gu & Zhi-Qiang Jiang & Wei-Xing Zhou & Didier Sornette, 2012. "Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series," Papers 1208.4158, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    2. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    3. Yang, Yan-Hong & Shao, Ying-Hui & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Revisiting the weak-form efficiency of the EUR/CHF exchange rate market: Evidence from episodes of different Swiss franc regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 734-746.
    4. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    5. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    6. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
    7. Sikora, Grzegorz, 2018. "Statistical test for fractional Brownian motion based on detrending moving average algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 54-62.
    8. Hongli Niu & Jun Wang, 2014. "Phase and multifractality analyses of random price time series by finite-range interacting biased voter system," Computational Statistics, Springer, vol. 29(5), pages 1045-1063, October.
    9. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    10. Bastien Berthelot & Eric Grivel & Pierrick Legrand & Audrey Giremus, 2021. "Definition of the fluctuation function in the detrended fluctuation analysis and its variants," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-20, November.
    11. Francisco Gerardo Benavides-Bravo & Dulce Martinez-Peon & Ángela Gabriela Benavides-Ríos & Otoniel Walle-García & Roberto Soto-Villalobos & Mario A. Aguirre-López, 2021. "A Climate-Mathematical Clustering of Rainfall Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and the Hurst Exponent," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    12. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    13. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    14. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    15. Klaudia Kozlowska & Miroslaw Latka & Bruce J West, 2020. "Significance of trends in gait dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-25, October.
    16. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    17. Perini de Souza, Noéle Bissoli & Cardoso dos Santos, José Vicente & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Long-range correlations of the wind speed in a northeast region of Brazil," Energy, Elsevier, vol. 243(C).
    18. Nurbanu Bursa & Hüseyin Tatlýdil, 2015. "Investigation of Credit Default Swaps using Detrended Fluctuation Analysis which is an Econophysical Technique," Eurasian Eononometrics, Statistics and Emprical Economics Journal, Eurasian Academy Of Sciences, vol. 2(2), pages 25-33, October.
    19. Zhang, Feng & Ren, Hang & Miao, Lijuan & Lei, Yadong & Duan, Mingkeng, 2019. "Simulation of daily precipitation from CMIP5 in the Qinghai-Tibet Plateau," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15, pages 68-74.
    20. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10615-:d:897829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.