IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10047-d887575.html
   My bibliography  Save this article

Scheduling Optimization of Offshore Oil Spill Cleaning Materials Considering Multiple Accident Sites and Multiple Oil Types

Author

Listed:
  • Kai Li

    (School of Marine Engineering, Jimei University, Xiamen 361021, China
    Fujian Province Key Laboratory of Ship and Ocean Engineering, Xiamen 361021, China
    Maritime College, Guangdong Ocean University, Zhanjiang 524055, China)

  • Hongliang Yu

    (School of Marine Engineering, Jimei University, Xiamen 361021, China
    Fujian Province Key Laboratory of Ship and Ocean Engineering, Xiamen 361021, China)

  • Yiqun Xu

    (School of Marine Engineering, Jimei University, Xiamen 361021, China
    Fujian Province Key Laboratory of Ship and Ocean Engineering, Xiamen 361021, China)

  • Xiaoqing Luo

    (College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China)

Abstract

Coastal governments have been preventing and controlling pollution in the marine environment by enhancing the construction of hardware and software facilities. The dispatch of offshore oil spill cleaning materials must be upgraded and optimized to cope with repeated offshore oil leak incidents while simultaneously improving cleaning efficiency and the ability to resist oil spill hazards. Accordingly, we set up a multiobjective optimization model with time window constraints to solve the scheduling optimization problem of offshore oil spill accidents with multiple locations and oil types. This model integrates the minimal sum of fixed costs, fuel consumption costs, maximum load violation costs, and time window penalty costs to solve the scheduling optimization problem of an offshore oil spill accident. An improved genetic algorithm is designed to solve the proposed mathematical model effectively and to make a scientific decontaminated decision-scheduling scheme. The practicality of the model and algorithm is validated by using a specific instance, demonstrating that the suggested method can effectively solve the schedule optimization problem for cleaning materials.

Suggested Citation

  • Kai Li & Hongliang Yu & Yiqun Xu & Xiaoqing Luo, 2022. "Scheduling Optimization of Offshore Oil Spill Cleaning Materials Considering Multiple Accident Sites and Multiple Oil Types," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10047-:d:887575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barry E. Prentice & Yui-Yip Lau & Adolf K. Y. Ng, 2021. "Transport Airships for Scheduled Supply and Emergency Response in the Arctic," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    2. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    3. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    4. Wenshuai Wu, 2021. "A Revised Grey Relational Analysis Method for Multicriteria Group Decision-Making with Expected Utility Theory for Oil Spill Emergency Management," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, March.
    5. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    6. Garrett, Richard A. & Sharkey, Thomas C. & Grabowski, Martha & Wallace, William A., 2017. "Dynamic resource allocation to support oil spill response planning for energy exploration in the Arctic," European Journal of Operational Research, Elsevier, vol. 257(1), pages 272-286.
    7. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowen Guo & Wei Zhan, 2023. "Research on Integrated Scheduling of Multi-Mode Emergency Rescue for Flooding in Chemical Parks," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    2. Xin Lv & Xin Liu & Xiaoke Hu & Ruiying Geng & Cheng Tang & Qianguo Xing, 2023. "The Red Tide Organism Chaetoceros sp. Responding to Exposure to Oil and Dispersant," Sustainability, MDPI, vol. 15(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lingye & Lu, Jing & Yang, Zaili, 2021. "Optimal scheduling of emergency resources for major maritime oil spills considering time-varying demand and transportation networks," European Journal of Operational Research, Elsevier, vol. 293(2), pages 529-546.
    2. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    3. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    4. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    5. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    6. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Ming Zhang & Yu Zhang & Zhifeng Qiu & Hanlin Wu, 2019. "Two-Stage Covering Location Model for Air–Ground Medical Rescue System," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    8. Jianliang Yang & Hanping Hou & Yingjie Ju & Shiling Gu & Zeqiang Qian & Xuan Wang, 2020. "The Mechanism of Distribution Effectiveness of Territory Emergency Public Storage Materials," Sustainability, MDPI, vol. 12(21), pages 1-14, October.
    9. Jie Cao & He Han & Yi-Ping Jiang & Ya-Jing Wang, 2018. "Emergency Rescue Vehicle Dispatch Planning Using a Hybrid Algorithm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1865-1890, November.
    10. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
    11. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    12. Fatemeh Faghih-Mohammadi & Mohammad Mahdi Nasiri & Dinçer Konur, 2023. "Cross-dock facility for disaster relief operations," Annals of Operations Research, Springer, vol. 322(1), pages 497-538, March.
    13. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    14. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    15. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    16. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    18. Changshi Liu & Gang Kou & Yi Peng & Fawaz E. Alsaadi, 2019. "Location-Routing Problem for Relief Distribution in the Early Post-Earthquake Stage from the Perspective of Fairness," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    19. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    20. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10047-:d:887575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.