IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9271-d874744.html
   My bibliography  Save this article

Smart Rainwater Harvesting for Sustainable Potable Water Supply in Arid and Semi-Arid Areas

Author

Listed:
  • Tariq Judeh

    (Laboratoire de Génie Civil et géo-Environnement, Lille University, IMT Lille Douai, JUNIA Hauts-de-France, ULR 4515-LGCgE, F-59000 Lille, France)

  • Isam Shahrour

    (Laboratoire de Génie Civil et géo-Environnement, Lille University, IMT Lille Douai, JUNIA Hauts-de-France, ULR 4515-LGCgE, F-59000 Lille, France)

  • Fadi Comair

    (Energy, Environment and Water Research Center, The Cyprus Institute, Aglantzia 2121, Cyprus)

Abstract

This paper presents a smart rainwater harvesting (RWH) system to address water scarcity in Palestine. This system aims to improve the water harvesting capacity by using a shared harvesting system at the neighborhood level and digital technology. The presentation of this system is organized as follows: (i) identification of the challenges of the rainwater harvesting at the neighborhood level, (ii) design of the smart RWH system architecture that addresses the challenges identified in the first phase, (iii) realization of a simulation-based reliability analysis for the smart system performance. This methodology was applied to a residential neighborhood in the city of Jenin, Palestine. The main challenges of smart water harvesting included optimizing the shared tank capacity, and the smart control of the water quality and leakage. The smart RWH system architecture design is proposed to imply the crowdsourcing-based and automated-based smart chlorination unit to control and monitor fecal coliform and residual chlorine: screens, filters, and the first flush diverter address RWH turbidity. Water level sensors/meters, water flow sensors/meters, and water leak sensors help detect a water leak and water allocation. The potential time-based reliability (R e ) and volumetric reliability (R v ) for the smart RWH system can reach 38% and 41%, respectively. The implication of the smart RWH system with a dual water supply results in full reliability indices (100%). As a result, a zero potable water shortage could be reached for the dual water supply system, compared to 36% for the municipal water supply and 59% for the smart RWH system. Results show that the smart RWH system is efficient in addressing potable water security, especially when combined with a dual water supply system.

Suggested Citation

  • Tariq Judeh & Isam Shahrour & Fadi Comair, 2022. "Smart Rainwater Harvesting for Sustainable Potable Water Supply in Arid and Semi-Arid Areas," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9271-:d:874744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Izabela Rojek & Jan Studzinski, 2019. "Detection and Localization of Water Leaks in Water Nets Supported by an ICT System with Artificial Intelligence Methods as a Way Forward for Smart Cities," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    2. Rostad, Nathan & Foti, Romano & Montalto, Franco A., 2016. "Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 97-106.
    3. Zhe Huang & Esther Laurentine Nya & Viet Cao & Willis Gwenzi & Mohammad Azizur Rahman & Chicgoua Noubactep, 2021. "Universal Access to Safe Drinking Water: Escaping the Traps of Non-Frugal Technologies," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    4. Zhe Huang & Esther Laurentine Nya & Mohammad Azizur Rahman & Tulinave Burton Mwamila & Viet Cao & Willis Gwenzi & Chicgoua Noubactep, 2021. "Integrated Water Resource Management: Rethinking the Contribution of Rainwater Harvesting," Sustainability, MDPI, vol. 13(15), pages 1-9, July.
    5. Adel Al-Salaymeh & Issam Al-Khatib & Hassan Arafat, 2011. "Towards Sustainable Water Quality: Management of Rainwater Harvesting Cisterns in Southern Palestine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1721-1736, April.
    6. Tariq Judeh & Marwan Haddad & Gül Özerol, 2017. "Assessment of water governance in the West Bank, Palestine," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 16(1/2/3), pages 119-134.
    7. Elias Farah & Isam Shahrour, 2017. "Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4821-4833, December.
    8. Sohail Abbas & Muhammad Junaid Mahmood & Muhammad Yaseen, 2021. "Assessing the potential for rooftop rainwater harvesting and its physio and socioeconomic impacts, Rawal watershed, Islamabad, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17942-17963, December.
    9. Şevik, Seyfi & Aktaş, Ahmet, 2022. "Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays," Renewable Energy, Elsevier, vol. 181(C), pages 490-503.
    10. Lawrence V. Fulton, 2018. "A Simulation of Rainwater Harvesting Design and Demand-Side Controls for Large Hospitals," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allison Lassiter & Nicole Leonard, 2022. "A systematic review of municipal smart water for climate adaptation and mitigation," Environment and Planning B, , vol. 49(5), pages 1406-1430, June.
    2. KiJeon Nam & Pouya Ifaei & Sungku Heo & Gahee Rhee & Seungchul Lee & ChangKyoo Yoo, 2019. "An Efficient Burst Detection and Isolation Monitoring System for Water Distribution Networks Using Multivariate Statistical Techniques," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    3. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    4. Alisson Lopes Rodrigues & Lineu Neiva Rodrigues & Guilherme Fernandes Marques & Pedro Manuel Villa, 2023. "Simulation Model to Assess the Water Dynamics in Small Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2019-2038, March.
    5. Sara Lopes Souto & Ricardo Prado Abreu Reis & Marcus André Siqueira Campos, 2023. "Impact of Installing Rainwater Harvesting System on Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 583-600, January.
    6. Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
    7. Koo, A Mi & Kim, Ju-Hee & Yoo, Seung-Hoon, 2022. "Household willingness to pay for a smart water metering and monitoring system: The case of South Korea," Utilities Policy, Elsevier, vol. 79(C).
    8. Miqdam T. Chaichan & Hussein A. Kazem & Ali H. A. Al-Waeli & Kamaruzzaman Sopian & Mohammed A. Fayad & Wissam H. Alawee & Hayder A. Dhahad & Wan Nor Roslam Wan Isahak & Ahmed A. Al-Amiery, 2023. "Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation," Energies, MDPI, vol. 16(9), pages 1-25, May.
    9. Joern Falk & Björn Globisch & Martin Angelmahr & Wolfgang Schade & Heike Schenk-Mathes, 2022. "Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    10. Mariia Pankova & Aleksy Kwilinski & Nataliya Dalevska & Valentyna Khobta, 2023. "Modelling the Level of the Enterprise’ Resource Security Using Artificial Neural Networks," Virtual Economics, The London Academy of Science and Business, vol. 6(1), pages 71-91, March.
    11. Hanane Ait Lahoussine Ouali & Ahmed Alami Merrouni & Shahariar Chowdhury & Kuaanan Techato & Sittiporn Channumsin & Nasim Ullah, 2022. "Optimization and Techno-Economic Appraisal of Parabolic Trough Solar Power Plant under Different Scenarios: A Case Study of Morocco," Energies, MDPI, vol. 15(22), pages 1-20, November.
    12. Wang Pengfei & Jiang Zhiqiang & Duan Jiefeng, 2023. "Burst Analysis of Water Supply Pipe Based on Hydrodynamic Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2161-2179, March.
    13. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    14. Casiano Flores, Cesar & Özerol, Gül & Bressers, Hans, 2017. "“Governance restricts”: A contextual assessment of the wastewater treatment policy in the Guadalupe River Basin, Mexico," Utilities Policy, Elsevier, vol. 47(C), pages 29-40.
    15. Saeed Nosratabadi & Amir Mosavi & Ramin Keivani & Sina Ardabili & Farshid Aram, 2020. "State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability," Papers 2010.02670, arXiv.org.
    16. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    17. Carlo Giudicianni & Manuel Herrera & Armando Nardo & Kemi Adeyeye, 2020. "Automatic Multiscale Approach for Water Networks Partitioning into Dynamic District Metered Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 835-848, January.
    18. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    19. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    20. Ayse Muhammetoglu & Yalçın Albayrak & Mustafa Bolbol & Simge Enderoglu & Habib Muhammetoglu, 2020. "Detection and Assessment of Post Meter Leakages in Public Places Using Smart Water Metering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2989-3002, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9271-:d:874744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.