IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9014-d869330.html
   My bibliography  Save this article

Agricultural Reservoir Operation Strategy Considering Climate and Policy Changes

Author

Listed:
  • Jaenam Lee

    (Rural Research Institute, Korea Rural Community Corporation, Naju 58327, Korea)

  • Hyungjin Shin

    (Rural Research Institute, Korea Rural Community Corporation, Naju 58327, Korea)

Abstract

Agricultural water is affected by climate change and water management. Agricultural reservoirs are increasing demand on the environmental water supply because the Korean government has recently implemented an integrated water resource management policy. However, agricultural reservoirs are still in operation solely to supply agricultural water. To examine sustainable agricultural water management under climate change, we analyzed the strategy of operating regulations to efficiently distribute agricultural water as environmental water. We simulated the agricultural reservoir operation, analyzing its water supply capacity by applying operation regulations. The simulation predicted that future water supply capacity would decrease if the existing operation were maintained, and agricultural reservoir operation will be necessary in the future. The proposed reservoir operating strategy decreased the maximum water shortage and number of water shortage days compared with the existing operation with the required water supply. Our results can contribute to agricultural reservoir operation strategies and sustainable water management in response to climate change and provide decision-making guidance on water distribution for environmental use in response to water management policy changes.

Suggested Citation

  • Jaenam Lee & Hyungjin Shin, 2022. "Agricultural Reservoir Operation Strategy Considering Climate and Policy Changes," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9014-:d:869330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rapeepat Techarungruengsakul & Anongrit Kangrang, 2022. "Application of Harris Hawks Optimization with Reservoir Simulation Model Considering Hedging Rule for Network Reservoir System," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    2. Mugabe, F. T. & Hodnett, M. G. & Senzanje, A., 2003. "Opportunities for increasing productive water use from dam water: a case study from semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 62(2), pages 149-163, September.
    3. Hassan Alimohammadi & Ali Reza Massah Bavani & Abbas Roozbahani, 2020. "Mitigating the Impacts of Climate Change on the Performance of Multi-Purpose Reservoirs by Changing the Operation Policy from SOP to MLDR," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1495-1516, March.
    4. K. Srinivasan & Kranthi Kumar, 2018. "Multi-Objective Simulation-Optimization Model for Long-term Reservoir Operation using Piecewise Linear Hedging Rule," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1901-1911, March.
    5. Fowe, T. & Karambiri, H. & Paturel, J.-E. & Poussin, J.-C. & Cecchi, P., 2015. "Water balance of small reservoirs in the Volta basin: A case study of Boura reservoir in Burkina Faso," Agricultural Water Management, Elsevier, vol. 152(C), pages 99-109.
    6. Kang, Mingoo & Park, Seungwoo, 2014. "Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations," Agricultural Water Management, Elsevier, vol. 143(C), pages 131-141.
    7. Umut Okkan & Umut Kirdemir, 2018. "Investigation of the Behavior of an Agricultural-Operated Dam Reservoir Under RCP Scenarios of AR5-IPCC," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2847-2866, June.
    8. Ashraf, M. & Kahlown, M.A. & Ashfaq, A., 2007. "Impact of small dams on agriculture and groundwater development: A case study from Pakistan," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 90-98, August.
    9. Youngkyu Jin & Sangho Lee, 2019. "Comparative Effectiveness of Reservoir Operation Applying Hedging Rules Based on Available Water and Beginning Storage to Cope with Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1897-1911, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyang Shan & Yan Sun & Wanghai Tao & Lijun Su, 2023. "Effects of Oxygenated Brackish Water on Pakchoi ( Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model," Agriculture, MDPI, vol. 13(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    2. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    3. Alisson Lopes Rodrigues & Lineu Neiva Rodrigues & Guilherme Fernandes Marques & Pedro Manuel Villa, 2023. "Simulation Model to Assess the Water Dynamics in Small Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2019-2038, March.
    4. Ayantunde, Augustine A. & Cofie, Olufunke. & Barron, Jennie, 2018. "Multiple uses of small reservoirs in crop-livestock agro-ecosystems of Volta basin: Implications for livestock management," Agricultural Water Management, Elsevier, vol. 204(C), pages 81-90.
    5. Silvia Di Francesco & Stefano Casadei & Ilaria Di Mella & Francesca Giannone, 2022. "The Role of Small Reservoirs in a Water Scarcity Scenario: a Computational Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 875-889, February.
    6. Meena, Mohar Singh & Singh, K M, 2019. "A Study on Impact of Training for Efficient Water Management in Agriculture," MPRA Paper 98115, University Library of Munich, Germany, revised 2019.
    7. Alvarez, V. Martinez & Gonzalez-Real, M.M. & Baille, A. & Martinez, J.M. Molina, 2007. "A novel approach for estimating the pan coefficient of irrigation water reservoirs: Application to South Eastern Spain," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 29-40, August.
    8. Martínez Alvarez, V. & Leyva, J. Calatrava & Maestre Valero, J.F. & Górriz, B. Martín, 2009. "Economic assessment of shade-cloth covers for agricultural irrigation reservoirs in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 96(9), pages 1351-1359, September.
    9. Duker, A.E.C. & Mawoyo, T.A. & Bolding, A. & de Fraiture, C. & van der Zaag, P., 2020. "Shifting or drifting? The crisis-driven advancement and failure of private smallholder irrigation from sand river aquifers in southern arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Shangming Jiang & Shaowei Ning & Xiuqing Cao & Juliang Jin & Fan Song & Xianjiang Yuan & Lei Zhang & Xiaoyan Xu & Parmeshwar Udmale, 2019. "Optimal Water Resources Regulation for the Pond Irrigation System Based on Simulation—A Case Study in Jiang-Huai Hilly Regions, China," IJERPH, MDPI, vol. 16(15), pages 1-18, July.
    11. Venot, Jean-Philippe & de Fraiture, Charlotte & Nti Acheampong, Ernest, 2012. "Revisiting dominant notions: a review of costs, performance and institutions of small reservoirs in sub-Saharan Africa," IWMI Research Reports 137587, International Water Management Institute.
    12. Mahboubeh Khorsandi & Parisa-Sadat Ashofteh & Firoozeh Azadi & Xuefeng Chu, 2022. "Multi-Objective Firefly Integration with the K-Nearest Neighbor to Reduce Simulation Model Calls to Accelerate the Optimal Operation of Multi-Objective Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3283-3304, July.
    13. Luis Garrote & Alfredo Granados & Mike Spiliotis & Francisco Martin-Carrasco, 2023. "Effectiveness of Adaptive Operating Rules for Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2527-2542, May.
    14. Jenq-Tzong Shiau & Hsu-Hui Wen & I-Wen Su, 2021. "Comparing Optimal Hedging Policies Incorporating Past Operation Information and Future Hydrologic Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2177-2196, May.
    15. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    16. KHAN Shohel & MOUSUMI Israth Jahan & BILLAH Mohammad Maruf, 2022. "Crop Production Fluctuation And Agricultural Transformation: Impacts Of Constructing A Closure Dam," Management of Sustainable Development, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 30-35, June.
    17. Anam Munawar & Namra Ghaffar & Hafsah Batool, 2022. "Advancements in Irrigation System in District Charsadda Through Latest Technique," International Journal of Agriculture & Sustainable Development, 50sea, vol. 4(1), pages 9-13, February.
    18. Songphol Songsaengrit & Anongrit Kangrang, 2022. "Dynamic Rule Curves and Streamflow under Climate Change for Multipurpose Reservoir Operation Using Honey-Bee Mating Optimization," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    19. Aniseh S. Bro & Emilio Moran & Miquéias Freitas Calvi, 2018. "Market Participation in the Age of Big Dams: The Belo Monte Hydroelectric Dam and Its Impact on Rural Agrarian Households," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    20. L. V. Noto & G. Cipolla & D. Pumo & A. Francipane, 2023. "Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2307-2323, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9014-:d:869330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.