IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8860-d866870.html
   My bibliography  Save this article

The LCT Challenge: Defining New Design Objectives to Increase the Sustainability of Building Retrofit Interventions

Author

Listed:
  • Chiara Passoni

    (Department of Engineering and Applied Science, University of Bergamo, 24144 Dalmine, Italy)

  • Elisabetta Palumbo

    (Department of Engineering and Applied Science, University of Bergamo, 24144 Dalmine, Italy)

  • Rui Pinho

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

  • Alessandra Marini

    (Department of Engineering and Applied Science, University of Bergamo, 24144 Dalmine, Italy)

Abstract

The decarbonization of the construction sector, which is one of the most impactful sectors worldwide, requires a significant paradigm shift from a linear economy to a circular, future-proofed and sustainable economy. In this transition, the role of designers and structural engineers becomes pivotal, and new design objectives and principles inspired by Life Cycle Thinking (LCT) should be defined and included from the early stages of the design process to allow for a truly sustainable renovation of the built environment. In this paper, an overview of LCT-based objectives and principles is provided, critically analyzing the current state of the art of sustainability and circularity in the construction sector. The effectiveness of applying such design principles from the early stages of the design of retrofit interventions is then demonstrated with reference to a case study building. Four seismic retrofit alternatives made of timber, steel and concrete, conceived according to either LCT principles or traditional, were designed and compared to a demolition and reconstruction scenario on the basis of five common environmental impact indicators. The indicators were calculated adopting simplified LCA analyses based on Environmental Product Declarations (EPDs), considering the product and End of Life stages of the building. The results of the comparative analyses confirm that LCT-based retrofit solutions are less impactful than both the traditional seismic retrofit interventions and the demolition and reconstruction scenario.

Suggested Citation

  • Chiara Passoni & Elisabetta Palumbo & Rui Pinho & Alessandra Marini, 2022. "The LCT Challenge: Defining New Design Objectives to Increase the Sustainability of Building Retrofit Interventions," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8860-:d:866870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisabetta Palumbo & Bernardette Soust-Verdaguer & Carmen Llatas & Marzia Traverso, 2020. "How to Obtain Accurate Environmental Impacts at Early Design Stages in BIM When Using Environmental Product Declaration. A Method to Support Decision-Making," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    2. Pamela Del Rosario & Elisabetta Palumbo & Marzia Traverso, 2021. "Environmental Product Declarations as Data Source for the Environmental Assessment of Buildings in the Context of Level(s) and DGNB: How Feasible Is Their Adoption?," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    3. Ambroise Lachat & Konstantinos Mantalovas & Tiffany Desbois & Oumaya Yazoghli-Marzouk & Anne-Sophie Colas & Gaetano Di Mino & Adélaïde Feraille, 2021. "From Buildings’ End of Life to Aggregate Recycling under a Circular Economic Perspective: A Comparative Life Cycle Assessment Case Study," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    4. Shaobo Liang & Hongmei Gu & Richard Bergman, 2021. "Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Cabaleiro & Borja Conde & Cristina González-Gaya & Brais Barros, 2023. "Removable, Reconfigurable, and Sustainable Steel Structures: A State-of-the-Art Review of Clamp-Based Steel Connections," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    2. Shantanu Ashok Raut & Lia Marchi & Jacopo Gaspari, 2025. "A System Thinking Approach to Circular-Based Strategies for Deep Energy Renovation: A Systematic Review," Energies, MDPI, vol. 18(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousif Jaleel & Mohd Saidin Misnan & Mohamad Zahierruden Ismail, 2024. "Environment Product Declaration (EPD) in Construction Industries: Significance and Barriers," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 1355-1365, June.
    2. Bernardette Soust-Verdaguer & Elisabetta Palumbo & Carmen Llatas & Álvaro Velasco Acevedo & María Dolores Fernández Galvéz & Endrit Hoxha & Alexander Passer, 2023. "The Use of Environmental Product Declarations of Construction Products as a Data Source to Conduct a Building Life-Cycle Assessment in Spain," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    3. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    4. Trong Vinh Bui & Hong Hai Dao & Huynh Thong Nguyen & Quoc Dung Ta & Hai Nam Nguyen Le & Phuc Kieu & Cao Lan Mai & Trung Dung Tran & Huu Son Nguyen & Hoang Dung Nguyen & Trung Tin Huynh, 2025. "A Critical Review on the Opportunities and Challenges of Offshore Carbon Capture, Utilization, and Storage," Sustainability, MDPI, vol. 17(20), pages 1-21, October.
    5. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    6. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    7. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    8. Luka Adanič & Sara Guerra de Oliveira & Andrej Tibaut, 2021. "BIM and Mechanical Engineering—A Cross-Disciplinary Analysis," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    9. Carvalho, S.Z. & Vernilli, F. & Almeida, B. & Demarco, M. & Silva, S.N., 2017. "The recycling effect of BOF slag in the portland cement properties," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 216-220.
    10. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    11. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    12. Jafari, Mohammad & Cao, Shuang Cindy & Jung, Jongwon, 2017. "Geological CO2 sequestration in saline aquifers: Implication on potential solutions of China’s power sector," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 137-155.
    13. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    14. Olga Lingaitiene & Aurelija Burinskiene, 2024. "Development of Trade in Recyclable Raw Materials: Transition to a Circular Economy," Economies, MDPI, vol. 12(2), pages 1-24, February.
    15. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Borja Izaola & Ortzi Akizu-Gardoki & Xabat Oregi, 2022. "Life Cycle Analysis Challenges through Building Rating Schemes within the European Framework," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    18. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    19. Andrade, Carlos & Desport, Lucas & Selosse, Sandrine, 2024. "Net-negative emission opportunities for the iron and steel industry on a global scale," Applied Energy, Elsevier, vol. 358(C).
    20. Gupta, Dipti & Pathak, Minal, 2025. "Economic and environmental implications of India's industry transition to net zero," Applied Energy, Elsevier, vol. 379(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8860-:d:866870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.