IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9625-d622729.html
   My bibliography  Save this article

From Buildings’ End of Life to Aggregate Recycling under a Circular Economic Perspective: A Comparative Life Cycle Assessment Case Study

Author

Listed:
  • Ambroise Lachat

    (Lab Navier, Ecole des Ponts, University Gustave Eiffel, CNRS, 6-8 Av. B. Pascal, MLV CEDEX 2, F-77455 Champs-sur-Marne, France)

  • Konstantinos Mantalovas

    (Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy)

  • Tiffany Desbois

    (Cerema, Direction Ouest, 5 Rue Jules Vallès, F-22000 Saint-Brieuc, France)

  • Oumaya Yazoghli-Marzouk

    (Cerema, Direction Centre Est, Agence Autun, Boulevard Giberstein, BP 141, F-71405 Autun, France)

  • Anne-Sophie Colas

    (GERS-RRO, University Gustave Eiffel, IFSTTAR, University Lyon, F-69675 Lyon, France)

  • Gaetano Di Mino

    (Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy)

  • Adélaïde Feraille

    (Lab Navier, Ecole des Ponts, University Gustave Eiffel, CNRS, 6-8 Av. B. Pascal, MLV CEDEX 2, F-77455 Champs-sur-Marne, France)

Abstract

The demolition of buildings, apart from being energy intensive and disruptive, inevitably produces construction and demolition waste (C&Dw). Unfortunately, even today, the majority of this waste ends up underexploited and not considered as valuable resources to be re-circulated into a closed/open loop process under the umbrella of circular economy (CE). Considering the amount of virgin aggregates needed in civil engineering applications, C&Dw can act as sustainable catalyst towards the preservation of natural resources and the shift towards a CE. This study completes current research by presenting a life cycle inventory compilation and life cycle assessment case study of two buildings in France. The quantification of the end-of-life environmental impacts of the two buildings and subsequently the environmental impacts of recycled aggregates production from C&Dw was realized using the framework of life cycle assessment (LCA). The results indicate that the transport of waste, its treatment, and especially asbestos’ treatment are the most impactful phases. For example, in the case study of the first building, transport and treatment of waste reached 35% of the total impact for global warming. Careful, proactive, and strategic treatment, geolocation, and transport planning is recommended for the involved stakeholders and decision makers in order to ensure minimal sustainability implications during the implementation of CE approaches for C&Dw.

Suggested Citation

  • Ambroise Lachat & Konstantinos Mantalovas & Tiffany Desbois & Oumaya Yazoghli-Marzouk & Anne-Sophie Colas & Gaetano Di Mino & Adélaïde Feraille, 2021. "From Buildings’ End of Life to Aggregate Recycling under a Circular Economic Perspective: A Comparative Life Cycle Assessment Case Study," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9625-:d:622729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantinos Mantalovas & Gaetano Di Mino & Ana Jimenez Del Barco Carrion & Elisabeth Keijzer & Björn Kalman & Tony Parry & Davide Lo Presti, 2020. "European National Road Authorities and Circular Economy: An Insight into Their Approaches," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    2. Konstantinos Mantalovas & Gaetano Di Mino, 2019. "The Sustainability of Reclaimed Asphalt as a Resource for Road Pavement Management through a Circular Economic Model," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    3. Konstantinos Mantalovas & Gaetano Di Mino, 2020. "Integrating Circularity in the Sustainability Assessment of Asphalt Mixtures," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    4. Sajjad Pourkhorshidi & Cesare Sangiorgi & Daniele Torreggiani & Patrizia Tassinari, 2020. "Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Passoni & Elisabetta Palumbo & Rui Pinho & Alessandra Marini, 2022. "The LCT Challenge: Defining New Design Objectives to Increase the Sustainability of Building Retrofit Interventions," Sustainability, MDPI, vol. 14(14), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Mantalovas & Gaetano Di Mino & Ana Jimenez Del Barco Carrion & Elisabeth Keijzer & Björn Kalman & Tony Parry & Davide Lo Presti, 2020. "European National Road Authorities and Circular Economy: An Insight into Their Approaches," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    2. Abokersh, Mohamed Hany & Norouzi, Masoud & Boer, Dieter & Cabeza, Luisa F. & Casa, Gemma & Prieto, Cristina & Jiménez, Laureano & Vallès, Manel, 2021. "A framework for sustainable evaluation of thermal energy storage in circular economy," Renewable Energy, Elsevier, vol. 175(C), pages 686-701.
    3. Margarita Ignatyeva & Vera Yurak & Oksana Logvinenko, 2020. "A New Look at the Natural Capital Concept: Approaches, Structure, and Evaluation Procedure," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
    4. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    5. Konstantinos Mantalovas & Gaetano Di Mino, 2020. "Integrating Circularity in the Sustainability Assessment of Asphalt Mixtures," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    6. Jorge Suárez-Macías & Juan María Terrones-Saeta & Francisco Javier Iglesias-Godino & Francisco Antonio Corpas-Iglesias, 2021. "Evaluation of Physical, Chemical, and Environmental Properties of Biomass Bottom Ash for Use as a Filler in Bituminous Mixtures," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    7. Penghui Wen & Chaohui Wang & Liang Song & Liangliang Niu & Haoyu Chen, 2021. "Durability and Sustainability of Cement-Stabilized Materials Based on Utilization of Waste Materials: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    8. Anthony Halog & Sandra Anieke, 2021. "A Review of Circular Economy Studies in Developed Countries and Its Potential Adoption in Developing Countries," Circular Economy and Sustainability, Springer, vol. 1(1), pages 209-230, June.
    9. Giusi Perri & Manuel De Rose & Josipa Domitrović & Rosolino Vaiana, 2023. "CO 2 Impact Analysis for Road Embankment Construction: Comparison of Lignin and Lime Soil Stabilization Treatments," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    10. Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    11. Ghulam Yaseen & Arshad Jamal & Meshal Almoshageh & Fawaz Alharbi & Hammad Hussain Awan, 2022. "Performance Evaluation of Aged Asphalt Pavement Binder through Rejuvenators," Sustainability, MDPI, vol. 14(21), pages 1-12, November.
    12. Paulo Miguel Pereira & Castorina Silva Vieira, 2022. "A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    13. Abdulmalek K. Badraddin & Rahimi A. Rahman & Saud Almutairi & Muneera Esa, 2021. "Main Challenges to Concrete Recycling in Practice," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    14. Nehal Elshaboury & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2022. "Construction and Demolition Waste Management Research: A Science Mapping Analysis," IJERPH, MDPI, vol. 19(8), pages 1-25, April.
    15. Rafael Robayo-Salazar & William Valencia-Saavedra & Ruby Mejía de Gutiérrez, 2022. "Reuse of Powders and Recycled Aggregates from Mixed Construction and Demolition Waste in Alkali-Activated Materials and Precast Concrete Units," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
    16. Daniel Grossegger, 2022. "Material flow analysis study of asphalt in an Austrian municipality," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 996-1009, June.
    17. Kartik Kapoor & Nikhil Sayi Amydala & Anubhav Ambooken & Anne Scheinberg, 2023. "Measuring Circularity in Cities: A Review of the Scholarly and Grey Literature in Search of Evidence-Based, Measurable and Actionable Indicators," Sustainability, MDPI, vol. 15(19), pages 1-26, September.
    18. Dan Dobrotă & Gabriela Dobrotă & Tiberiu Dobrescu & Cristina Mohora, 2019. "The Redesigning of Tires and the Recycling Process to Maintain an Efficient Circular Economy," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    19. Barbara Sadowska-Buraczewska & Małgorzata Grzegorczyk-Frańczak, 2021. "Sustainable Recycling of High-Strength Concrete as an Alternative to Natural Aggregates in Building Structures," Sustainability, MDPI, vol. 13(8), pages 1-16, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9625-:d:622729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.