IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8611-d606901.html
   My bibliography  Save this article

Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation

Author

Listed:
  • Yunpeng Zhao

    (Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA)

  • Dimitrios Goulias

    (Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA)

  • Luca Tefa

    (Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy)

  • Marco Bassani

    (Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy)

Abstract

The use of recycled materials in roadway construction and rehabilitation can achieve significant benefits in saving natural resources, reducing energy, greenhouse gas emissions and costs. Construction and demolition waste (CDW) recycled aggregate as an alternative to natural one can enhance sustainability benefits in roadway infrastructure. The objective of this study was to quantitatively assess the life cycle economic and environmental benefits when alternative stabilized-CDW aggregates are used in pavement construction. Comparative analysis was conducted on a pavement project representative of typical construction practices in northern Italy so as to quantify such benefits. The proposed alternative sustainable construction strategies considered CDW aggregates stabilized with both cement and cement kiln dust (CKD) for the base layer of the roadway. The life cycle assessment results indicate that using CDW aggregate stabilized with CKD results in considerable cost savings and environmental benefits due to (i) lower energy consumption and emissions generation during material processing and (ii) reduction in landfill disposal. The benefits illustrated in this analysis should encourage the wider adoption of stabilized CDW aggregate in roadway construction and rehabilitation. In terms of transferability, the analysis approach suggested in this study can be used to assess the economic and environmental benefits of these and other recycled materials in roadway infrastructure elsewhere.

Suggested Citation

  • Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8611-:d:606901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunpeng Zhao & Dimitrios Goulias & Dominique Peterson, 2021. "Recycled Asphalt Pavement Materials in Transport Pavement Infrastructure: Sustainability Analysis & Metrics," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    2. Thives, Liseane Padilha & Ghisi, Enedir, 2017. "Asphalt mixtures emission and energy consumption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 473-484.
    3. Sajjad Pourkhorshidi & Cesare Sangiorgi & Daniele Torreggiani & Patrizia Tassinari, 2020. "Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    4. Alberta Carpenter & Jenna R. Jambeck & Kevin Gardner & Keith Weitz, 2013. "Life Cycle Assessment of End‐of‐Life Management Options for Construction and Demolition Debris," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 396-406, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Konstantinos Gkyrtis & Christina Plati & Andreas Loizos, 2023. "Structural Performance of Foamed Asphalt Base in a Full Depth Reclaimed and Sustainable Pavement," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Espinoza & Cristian Medina & Alejandra Calabi-Floody & Elsa Sánchez-Alonso & Gonzalo Valdés & Andrés Quiroz, 2020. "Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    2. Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    3. Penghui Wen & Chaohui Wang & Liang Song & Liangliang Niu & Haoyu Chen, 2021. "Durability and Sustainability of Cement-Stabilized Materials Based on Utilization of Waste Materials: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    4. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Väntsi, Olli & Kärki, Timo, 2015. "Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 38-48.
    6. Christian Dierks & Tabea Hagedorn & Alessio Campitelli & Winfried Bulach & Vanessa Zeller, 2021. "Are LCA Studies on Bulk Mineral Waste Management Suitable for Decision Support? A Critical Review," Sustainability, MDPI, vol. 13(9), pages 1-27, April.
    7. Paulo Miguel Pereira & Castorina Silva Vieira, 2022. "A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    8. Aner Martinez-Soto & Gonzalo Valdes-Vidal & Alejandra Calabi-Floody & Constanza Avendaño-Vera & Camila Martínez-Toledo, 2022. "Comparison of Environmental Loads of Fibers Used in the Manufacture of Hot Mix Asphalt (HMA) and Stone Mastic Asphalt (SMA) Mixes Using a Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    9. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    10. Jayne F. Knott & Jennifer M. Jacobs & Jo E. Sias & Paul Kirshen & Eshan V. Dave, 2019. "A Framework for Introducing Climate-Change Adaptation in Pavement Management," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    11. Christina Plati & Brad Cliatt, 2021. "Building Sustainable Pavements: Investigating the Effectiveness of Recycled Tire Rubber as a Modifier in Asphalt Mixtures," Energies, MDPI, vol. 14(21), pages 1-16, October.
    12. Bo Peng & Xiaoying Tong & Shijiang Cao & Wenying Li & Gui Xu, 2020. "Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    13. F. C. G. Martinho & L. G. Picado-Santos & S. D. Capitão, 2018. "Feasibility Assessment of the Use of Recycled Aggregates for Asphalt Mixtures," Sustainability, MDPI, vol. 10(6), pages 1-23, May.
    14. Muhammad Akhtar Tarar & Ammad Hassan Khan & Zia ur Rehman & Wasim Abbass & Ali Ahmed & Elimam Ali & Mohamed Mahmoud Sayed & Mubashir Aziz, 2022. "Evaluation of Resilience Parameters of Soybean Oil-Modified and Unmodified Warm-Mix Asphalts—A Way Forward towards Sustainable Pavements," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    15. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    16. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    17. Anda Ligia Belc & Adrian Ciutina & Raluca Buzatu & Florin Belc & Ciprian Costescu, 2021. "Environmental Impact Assessment of Different Warm Mix Asphalts," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    18. Ali A. Hatoum & Jamal M. Khatib & Firas Barraj & Adel Elkordi, 2022. "Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    19. Ambroise Lachat & Konstantinos Mantalovas & Tiffany Desbois & Oumaya Yazoghli-Marzouk & Anne-Sophie Colas & Gaetano Di Mino & Adélaïde Feraille, 2021. "From Buildings’ End of Life to Aggregate Recycling under a Circular Economic Perspective: A Comparative Life Cycle Assessment Case Study," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    20. Firas Barraj & Sarah Mahfouz & Hussein Kassem & Jamal Khatib & Dimitrios Goulias & Adel Elkordi, 2023. "Investigation of Using Crushed Glass Waste as Filler Replacement in Hot Asphalt Mixtures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8611-:d:606901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.