IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7891-d850620.html
   My bibliography  Save this article

LINES: muLtImodal traNsportation rEsilience analySis

Author

Listed:
  • Joao Tiago Aparicio

    (INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisboa, Portugal)

  • Elisabete Arsenio

    (LNEC, Department of Transport, Av. do Brasil 101, 1700-075 Lisboa, Portugal)

  • Francisco C. Santos

    (INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisboa, Portugal)

  • Rui Henriques

    (INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisboa, Portugal)

Abstract

This study aims to contribute to more sustainable mobility solutions by proposing robust and actionable methods to assess the resilience of a multimodal transport system. Resilience is seen in a dynamic lean setting, looking at aspects in the network topology and user’s flow and demand throughout a parameterizable period. We hypothesize that this network’s appropriate multi-layered and traffic-sensitive modeling can promote the integrated analysis of different transport modes and support an improved resilience analysis. We operationalize the lean resilience conceptual construct with the proposed muLtImodal traNsportation rEsilience aSsessment (LINES) methodological process. Using the city of Lisbon as a study case, we illustrate the relevance of the proposed methodology to detect actionable vulnerabilities in the bus–tram–subway network.

Suggested Citation

  • Joao Tiago Aparicio & Elisabete Arsenio & Francisco C. Santos & Rui Henriques, 2022. "LINES: muLtImodal traNsportation rEsilience analySis," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7891-:d:850620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, Rounaq & Ferreira, Joseph, 2021. "Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19," Transport Policy, Elsevier, vol. 103(C), pages 197-210.
    2. Mahyar Habibi Rad & Mohammad Mojtahedi & Michael J. Ostwald, 2021. "The Integration of Lean and Resilience Paradigms: A Systematic Review Identifying Current and Future Research Directions," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    3. Fotouhi, Hossein & Moryadee, Seksun & Miller-Hooks, Elise, 2017. "Quantifying the resilience of an urban traffic-electric power coupled system," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 79-94.
    4. Arsenio, Elisabete & Martens, Karel & Di Ciommo, Floridea, 2016. "Sustainable urban mobility plans: Bridging climate change and equity targets?," Research in Transportation Economics, Elsevier, vol. 55(C), pages 30-39.
    5. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    6. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    7. Chen, Jinqu & Liu, Jie & Peng, Qiyuan & Yin, Yong, 2022. "Resilience assessment of an urban rail transit network: A case study of Chengdu subway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    8. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    9. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    10. Edwin Montes-Orozco & Roman-Anselmo Mora-Gutiérrez & Bibiana Obregón-Quintana & Sergio-G. de-los-Cobos-Silva & Eric A. Rincón-García & Pedro Lara-Velázquez & Miguel A. Gutiérrez-Andrade, 2020. "Inverse Percolation to Quantify Robustness in Multiplex Networks," Complexity, Hindawi, vol. 2020, pages 1-11, October.
    11. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    12. Yasir Tariq Mohmand & Aihu Wang, 2013. "Weighted Complex Network Analysis of Pakistan Highways," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-5, November.
    13. M. Piraveenan & M. Prokopenko & A. Y. Zomaya, 2009. "Local assortativity and growth of Internet," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(2), pages 275-285, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    3. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    6. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    8. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    9. Georgiana Madar & Hanna Maoh & William Anderson, 2020. "Examining the robustness of the Ontario truck road network," Journal of Geographical Systems, Springer, vol. 22(3), pages 309-333, July.
    10. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    11. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    12. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    13. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Oliveira, Eduardo Leal de & Portugal, Licínio da Silva & Porto Junior, Walter, 2016. "Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 195-208.
    15. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    16. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    18. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    19. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    20. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7891-:d:850620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.