IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7746-d847424.html
   My bibliography  Save this article

Effects of pH Adjustment on the Release of Carbon Source of Particulate Organic Matter (POM) in Domestic Sewage

Author

Listed:
  • Lei Zhu

    (School of Environment, Harbin Institute of Technology, Harbin 150090, China
    Jiangsu Yihuan Group Co., Ltd., Yixing 214206, China)

  • Jiahou Hao

    (School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China)

  • Houwei Lai

    (South China Institute of Environmental Science, Ministry of Ecology and Environment (MEE), Guangzhou 510655, China)

  • Guibai Li

    (School of Environment, Harbin Institute of Technology, Harbin 150090, China)

Abstract

The use of anaerobic hydrolytic fermentation to develop more available carbon sources from domestic sewage influent particulate organic matter (POM) has received increasing attention. However, the slow hydrolysis rate of POM limits the application of this technology. This study aimed to improve the carbon source release efficiency of POM by pH adjustment and to reveal the hydrolysis mechanism. Results showed that adjusting the initial pH of POM to 3, 9, and 11 enhanced carbon source release in the anaerobic hydrolysis fermentation process of POM. The pretreatment under pH value of 11 contributed to the highest yield and productivity of carbon source, reaching the soluble chemical oxygen demand (SCOD) of 2782 mg/L at the 4th day. The pH 3 pretreatment was more beneficial for phosphorus resource recovery, which contributed to the highest release concentration of PO 4 3− -P, reaching 48.2 mg/L at the 3rd day, accounting for 90% of TP. Microbial community structure analysis indicated that pH 11 preconditioning promoted the enrichment of proteolytic bacteria ( Proteocatella and Proteiniclasticum ) and polysaccharide hydrolytic bacteria ( Trichococcus and Acinetobacter ) and inhibited the growth of acetate-consuming methanogenic archaea, which contributed to the highest carbon release of POM in domestic sewage.

Suggested Citation

  • Lei Zhu & Jiahou Hao & Houwei Lai & Guibai Li, 2022. "Effects of pH Adjustment on the Release of Carbon Source of Particulate Organic Matter (POM) in Domestic Sewage," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7746-:d:847424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Zhiqiang & Sun, Cheng & Li, Yang & Peng, Hong & Zhang, Yaobin, 2020. "Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation," Renewable Energy, Elsevier, vol. 148(C), pages 523-533.
    2. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    3. Yellezuome, Dominic & Zhu, Xianpu & Wang, Zengzhen & Liu, Ronghou, 2022. "Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Koch, Konrad & Drewes, Jörg E., 2014. "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data," Applied Energy, Elsevier, vol. 120(C), pages 11-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    3. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    4. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    5. Yu, Qilin & Mao, Haohao & Zhao, Zhiqiang & Zhang, Yaobin, 2023. "Electro-polarization of the sludge with dynamic magnetic field enhanced the interspecies electron transfer in ZVI-added anaerobic digesters," Renewable Energy, Elsevier, vol. 215(C).
    6. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin & Nie, Yongfeng, 2017. "Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion," Energy, Elsevier, vol. 118(C), pages 377-386.
    7. Ilyes Dammak & Mariem Fersi & Ridha Hachicha & Slim Abdelkafi, 2023. "Current Insights into Growing Microalgae for Municipal Wastewater Treatment and Biomass Generation," Resources, MDPI, vol. 12(10), pages 1-28, October.
    8. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    9. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    10. Wang, Jie & Li, Yongmei, 2016. "Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion," Applied Energy, Elsevier, vol. 183(C), pages 1123-1132.
    11. Ebenezer, A. Vimala & Arulazhagan, P. & Adish Kumar, S. & Yeom, Ick-Tae & Rajesh Banu, J., 2015. "Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge," Applied Energy, Elsevier, vol. 145(C), pages 104-110.
    12. Advait Palakodeti & Samet Azman & Raf Dewil & Lise Appels, 2022. "Ammonia Recovery from Organic Waste Digestate via Gas–Liquid Stripping: Application of the Factorial Design of Experiments and Comparison of the Influence of the Stripping Gas," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
    13. Ester Scotto di Perta & Raffaele Grieco & Stefano Papirio & Giovanni Esposito & Elena Cervelli & Marco Bovo & Stefania Pindozzi, 2023. "Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion," Sustainability, MDPI, vol. 15(12), pages 1-10, June.
    14. Chowdhury, M.M.I. & Nakhla, G. & Zhu, J., 2017. "Ultrasonically enhanced anaerobic digestion of thickened waste activated sludge using fluidized bed reactors," Applied Energy, Elsevier, vol. 204(C), pages 807-818.
    15. Yifan Zhou & Yingying Zhu & Jinyuan Zhu & Chaoran Li & Geng Chen, 2023. "A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes," IJERPH, MDPI, vol. 20(4), pages 1-27, February.
    16. Shen, Ruixia & Geng, Tao & Yao, Zonglu & Yu, Jiadong & Luo, Juan & Wang, Hongliang & Zhao, Lixin, 2023. "Characteristics of instability and suitable early-warning indicators for cornstalk-fed anaerobic digestion subjected to various sudden changes," Energy, Elsevier, vol. 278(C).
    17. Fasil Ayelegn Tassew & Wenche Hennie Bergland & Carlos Dinamarca & Roald Kommedal & Rune Bakke, 2019. "Granular Sludge Bed Processes in Anaerobic Digestion of Particle-Rich Substrates," Energies, MDPI, vol. 12(15), pages 1-20, July.
    18. Zhao, Zhiqiang & Li, Yang & Zhang, Yaobin, 2021. "Engineering enhanced anaerobic digestion: Benefits of ethanol fermentation pretreatment for boosting direct interspecies electron transfer," Energy, Elsevier, vol. 228(C).
    19. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of pungency degree on mesophilic anaerobic digestion of kitchen waste," Applied Energy, Elsevier, vol. 181(C), pages 171-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7746-:d:847424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.