IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7161-d836254.html
   My bibliography  Save this article

Stability of the Anaerobic Digestion Process during Switch from Parallel to Serial Operation—A Microbiome Study

Author

Listed:
  • Andreas Walter

    (Department of Biotechnology & Food Engineering, MCI—The Entrepreneurial School, Maximilianstraße 2, 6020 Innsbruck, Austria)

  • Maria Hanser

    (Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria)

  • Christian Ebner

    (Department of Waste Treatment and Resource Management, University of Innsbruck, Technikerstraße 13a, 6020 Innsbruck, Austria)

  • Heribert Insam

    (Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria)

  • Rudolf Markt

    (Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria)

  • Sebastian Hupfauf

    (Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria)

  • Maraike Probst

    (Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria)

Abstract

Anaerobic digestion is a common procedure of treating sewage sludge at wastewater treatment plants. However, plants differ in terms of the number of reactors and, in case of several reactors, their operation mode. To confirm the flexibility of well adapted, full-scale anaerobic digestion plants, we monitored the physicochemical process conditions of two continuously stirred tank reactors over one hydraulic retention time before and after the operation mode was switched from parallel to serial operation. To investigate changes in the involved microbiota, we applied Illumina amplicon sequencing. The rapid change between operation modes did not affect the process performance. In both parallel and serial operation mode, we detected a highly diverse microbial community, in which Bacteroidetes , Firmicutes , Proteobacteria and Claocimonetes were high in relative abundance. While a prominent core microbiome was maintained in both configurations, changes in the involved microbiota were evident at a lower taxonomical level comparing both reactors and operation modes. The most prominent methanogenic Euryarchaeota detected were Methanosaeta and cand. Methanofastidiosum . Volatile fatty acids were degraded immediately in both reactors, suggesting that the second reactor could be used to produce methane on demand, by inserting easily degradable substrates.

Suggested Citation

  • Andreas Walter & Maria Hanser & Christian Ebner & Heribert Insam & Rudolf Markt & Sebastian Hupfauf & Maraike Probst, 2022. "Stability of the Anaerobic Digestion Process during Switch from Parallel to Serial Operation—A Microbiome Study," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7161-:d:836254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Athanasoulia, E. & Melidis, P. & Aivasidis, A., 2012. "Optimization of biogas production from waste activated sludge through serial digestion," Renewable Energy, Elsevier, vol. 47(C), pages 147-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasoulia, E. & Melidis, P. & Aivasidis, A., 2014. "Co-digestion of sewage sludge and crude glycerol from biodiesel production," Renewable Energy, Elsevier, vol. 62(C), pages 73-78.
    2. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    3. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    4. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2018. "Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure," Energy, Elsevier, vol. 165(PB), pages 760-768.
    5. Li, YuQian & Liu, ChunMei & Wachemo, Akiber Chufo & Li, XiuJin, 2018. "Effects of liquid fraction of digestate recirculation on system performance and microbial community structure during serial anaerobic digestion of completely stirred tank reactors for corn stover," Energy, Elsevier, vol. 160(C), pages 309-317.
    6. Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
    7. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    8. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.
    9. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    10. Afazeli, Hadi & Jafari, Ali & Rafiee, Shahin & Nosrati, Mohsen, 2014. "An investigation of biogas production potential from livestock and slaughterhouse wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 380-386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7161-:d:836254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.