IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7089-d835111.html
   My bibliography  Save this article

Effects of Agrivoltaic Systems on the Surrounding Rooftop Microclimate

Author

Listed:
  • Jerome Wei Chiang Teng

    (Sustainable Infrastructure Engineering (Building Services) Progamme, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore)

  • Chew Beng Soh

    (Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore)

  • Shiddalingeshwar Channabasappa Devihosur

    (Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore)

  • Ryan Hong Soon Tay

    (Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore)

  • Steve Kardinal Jusuf

    (Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore)

Abstract

Agrivoltaic systems have the potential to maximize the usefulness of spaces in building rooftops. Urban farming systems improve the microclimatic conditions, which are beneficial to solar photovoltaic (PV) systems, as they lower the operating temperatures, resulting in a higher operating efficiency. Microclimate simulations by means of ENVI-met simulation showed that between 0800 h and 1800 h, PV temperatures in the plot that has crops below the PV system were on average lower by 2.83 °C and 0.71 °C as compared without crops on a typical sunny and cloudy day, respectively. Hence, we may see PV efficiency performance improvement of 1.13–1.42% and 0.28–0.35% on a sunny day and cloudy day, respectively. Data collected from a physical prototype of an agrivoltaic system suggested that evaporative cooling was responsible for the reduction in ambient temperatures. The presence of crops growing underneath the PV canopy resulted in the agrivoltaic prototype generating between 3.05 and 3.2% more energy over the day as compared to a control system with no crops underneath.

Suggested Citation

  • Jerome Wei Chiang Teng & Chew Beng Soh & Shiddalingeshwar Channabasappa Devihosur & Ryan Hong Soon Tay & Steve Kardinal Jusuf, 2022. "Effects of Agrivoltaic Systems on the Surrounding Rooftop Microclimate," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7089-:d:835111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoudinezhad, S. & Cotfas, D.T. & Cotfas, P.A. & Skjølstrup, Enok J.H. & Pedersen, K. & Rosendahl, L. & Rezania, A., 2022. "Experimental investigation on spectrum beam splitting photovoltaic–thermoelectric generator under moderate solar concentrations," Energy, Elsevier, vol. 238(PC).
    2. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    3. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    4. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noor Fadzlinda Othman & Mohammad Effendy Ya’acob & Li Lu & Ahmad Hakiim Jamaluddin & Ahmad Suhaizi Mat Su & Hashim Hizam & Rosnah Shamsudin & Juju Nakasha Jaafar, 2023. "Advancement in Agriculture Approaches with Agrivoltaics Natural Cooling in Large Scale Solar PV Farms," Agriculture, MDPI, vol. 13(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    2. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    3. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    4. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    5. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    6. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).
    8. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    9. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    10. Rittick Maity & Kumarasamy Sudhakar & Amir Abdul Razak & Alagar Karthick & Dan Barbulescu, 2023. "Agrivoltaic: A Strategic Assessment Using SWOT and TOWS Matrix," Energies, MDPI, vol. 16(8), pages 1-18, April.
    11. Jian Chen & Lingjun Wang & Yuanyuan Li, 2022. "Research on Niche Evaluation of Photovoltaic Agriculture in China," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
    12. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.
    14. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    15. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    16. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    18. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    19. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    20. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7089-:d:835111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.