IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p423-d715477.html
   My bibliography  Save this article

Improving Oil Recovery of the Heterogeneous Low Permeability Reservoirs by Combination of Polymer Hydrolysis Polyacrylamide and Two Highly Biosurfactant-Producing Bacteria

Author

Listed:
  • Shuwen Xue

    (Research Center for Oilfield Microbial Engineering, the College of Life Sciences, Northwest University, Xi’an 710069, China)

  • Yanhong Zhao

    (Research Institute of Oilfield Chemistry, Xi’an Changqing Chemical Group Co., Ltd., Xi’an 710018, China)

  • Chunling Zhou

    (Research Institute of Oilfield Chemistry, Xi’an Changqing Chemical Group Co., Ltd., Xi’an 710018, China)

  • Guangming Zhang

    (Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi’an 710069, China)

  • Fulin Chen

    (Research Center for Oilfield Microbial Engineering, the College of Life Sciences, Northwest University, Xi’an 710069, China
    Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi’an 710069, China)

  • Shiwei Wang

    (Research Center for Oilfield Microbial Engineering, the College of Life Sciences, Northwest University, Xi’an 710069, China
    Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi’an 710069, China
    Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an 710069, China)

Abstract

Polymer hydrolysis polyacrylamide and microbes have been used to enhance oil recovery in many oil reservoirs. However, the application of this two-method combination was less investigated, especially in low permeability reservoirs. In this work, two bacteria, a rhamnolipid-producing Pseudomonas aeruginosa 8D and a lipopeptide-producing Bacillus subtilis S4, were used together with hydrolysis poly-acrylamide in a low permeability heterogeneous core physical model. The results showed that when the two bacterial fermentation liquids were used at a ratio by volumeof 1:3 ( v : v ), the mixture showed the optimal physicochemical properties for oil-displacement. In addition, the mixture was stable under the conditions of various temperature (20–70 °C) and salinity (0–22%). When the polymer and bacteria were mixed together, it had no significant effects in the viscosity of polymer hydrolysis polyacrylamide and the viability of bacteria. The core oil-displacement test displayed that polymer hydrolysis polyacrylamide addition followed by the bacterial mixture injection could significantly enhance oil recovery. The recovery rate was increased by 15.01% and 10.03%, respectively, compared with the sole polymer hydrolysis polyacrylamide flooding and microbial flooding. Taken together, these results suggest that the strategy of polymer hydrolysis poly-acrylamide addition followed by microbial flooding is beneficial for improving oil recovery in heterogeneous low permeability reservoirs.

Suggested Citation

  • Shuwen Xue & Yanhong Zhao & Chunling Zhou & Guangming Zhang & Fulin Chen & Shiwei Wang, 2021. "Improving Oil Recovery of the Heterogeneous Low Permeability Reservoirs by Combination of Polymer Hydrolysis Polyacrylamide and Two Highly Biosurfactant-Producing Bacteria," Sustainability, MDPI, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:423-:d:715477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Alvarado & Eduardo Manrique, 2010. "Enhanced Oil Recovery: An Update Review," Energies, MDPI, vol. 3(9), pages 1-47, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiankang Xin & Yiqiang Li & Gaoming Yu & Weiying Wang & Zhongzhi Zhang & Maolin Zhang & Wenli Ke & Debin Kong & Keliu Wu & Zhangxin Chen, 2017. "Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies," Energies, MDPI, vol. 10(11), pages 1-25, October.
    2. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    3. Welkenhuysen, Kris & Rupert, Jort & Compernolle, Tine & Ramirez, Andrea & Swennen, Rudy & Piessens, Kris, 2017. "Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea," Applied Energy, Elsevier, vol. 185(P1), pages 745-761.
    4. Rui Dias & Paulo Alexandre & Nuno Teixeira & Mariana Chambino, 2023. "Clean Energy Stocks: Resilient Safe Havens in the Volatility of Dirty Cryptocurrencies," Energies, MDPI, vol. 16(13), pages 1-24, July.
    5. Adedapo N. Awolayo & Hemanta K. Sarma & Long X. Nghiem, 2018. "Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts," Energies, MDPI, vol. 11(11), pages 1-66, November.
    6. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    7. Amjed M. Hassan & Mohamed A. Mahmoud & Abdulaziz A. Al-Majed & Ayman R. Al-Nakhli & Mohammed A. Bataweel & Salaheldin Elkatatny, 2019. "Mitigation of Condensate Banking Using Thermochemical Treatment: Experimental and Analytical Study," Energies, MDPI, vol. 12(5), pages 1-12, February.
    8. Michele Fioretti & Alessandro Iaria & Aljoscha Janssen & Robert K Perrons & Clément Mazet-Sonilhac, 2022. "Innovation Begets Innovation and Concentration: the Case of Upstream Oil & Gas in the North Sea," Working Papers hal-03791971, HAL.
    9. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    10. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    11. Bai, Mingxing & Zhang, Zhichao & Cui, Xiaona & Song, Kaoping, 2017. "Studies of injection parameters for chemical flooding in carbonate reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1464-1471.
    12. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    13. Chao Ma & Xingyu Liu & Longlong Xie & Yan Chen & Wendong Ren & Wen Gu & Minghua Zhang & Huili Zhou, 2021. "Synthesis and Molecular Dynamics Simulation of Amphiphilic Low Molecular Weight Polymer Viscosity Reducer for Heavy Oil Cold Recovery," Energies, MDPI, vol. 14(21), pages 1-14, October.
    14. Nanjun Lai & Xin Guo & Ning Zhou & Qian Xu, 2016. "Shear Resistance Properties of Modified Nano-SiO 2 /AA/AM Copolymer Oil Displacement Agent," Energies, MDPI, vol. 9(12), pages 1-13, December.
    15. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    16. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    17. Piotr Kasza & Marek Czupski & Klaudia Wilk & Mateusz Masłowski & Rafał Moska & Łukasz Leśniak, 2020. "Laboratory Testing of Novel Polyfraction Nanoemulsion for EOR Processes in Carbonate Formations," Energies, MDPI, vol. 13(16), pages 1-16, August.
    18. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    19. Xiaofei Sun & Yanyu Zhang & Guangpeng Chen & Zhiyong Gai, 2017. "Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress," Energies, MDPI, vol. 10(3), pages 1-33, March.
    20. Maaike Berger & Francesco Picchioni & Pablo Druetta, 2022. "Simulation of Polymer Chemical Enhanced Oil Recovery in Ghawar Field," Energies, MDPI, vol. 15(19), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:423-:d:715477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.