IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5295-d551191.html
   My bibliography  Save this article

Job Adjustment Strategy for Predictive Maintenance in Semi-Fully Flexible Systems Based on Machine Health Status

Author

Listed:
  • Thirupathi Samala

    (Department of Mechanical Engineering, NIT Warangal, Warangal 506004, India)

  • Vijaya Kumar Manupati

    (Department of Mechanical Engineering, NIT Warangal, Warangal 506004, India)

  • Bethalam Brahma Sai Nikhilesh

    (Department of Mechanical Engineering, NIT Warangal, Warangal 506004, India)

  • Maria Leonilde Rocha Varela

    (Department of Production and Systems, School of Engineering, University of Minho, 4804-533 Guimarães, Portugal)

  • Goran Putnik

    (Department of Production and Systems, School of Engineering, University of Minho, 4804-533 Guimarães, Portugal)

Abstract

Complex systems consist of multiple machines that are designed with a certain extent of redundancy to control any unanticipated events. The productivity of complex systems is highly affected by unexpected simultaneous machine failures due to overrunning of machines, improper maintenance, and natural characteristics. We proposed realistic configurations with multiple machines having several flexibilities to handle the above issues. The objectives of the proposed model are to reduce simultaneous machine failures by slowing down the pace of degradation of machines, to improve the average occurrence of the first failure time of machines, and to decrease the loss of production. An approach has been developed using each machine’s degradation information to predict the machine’s residual life based on which the job adjustment strategy where machines with a lower health status will be given a high number of jobs to perform is proposed. This approach is validated by applying it in a fabric weaving industry as a real-world case study under different scenarios and the performance is compared with two other key benchmark strategies.

Suggested Citation

  • Thirupathi Samala & Vijaya Kumar Manupati & Bethalam Brahma Sai Nikhilesh & Maria Leonilde Rocha Varela & Goran Putnik, 2021. "Job Adjustment Strategy for Predictive Maintenance in Semi-Fully Flexible Systems Based on Machine Health Status," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5295-:d:551191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye, Zhenggeng & Cai, Zhiqiang & Zhou, Fuli & Zhao, Jiangbin & Zhang, Pan, 2019. "Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 345-356.
    2. Linkan Bian & Nagi Gebraeel, 2012. "Computing and updating the first-passage time distribution for randomly evolving degradation signals," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 974-987.
    3. Hyun-Lim Yang & Tai-Woo Chang & Yerim Choi, 2018. "Exploring the Research Trend of Smart Factory with Topic Modeling," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    4. Changyue Song & Kaibo Liu, 2018. "Statistical degradation modeling and prognostics of multiple sensor signals via data fusion: A composite health index approach," IISE Transactions, Taylor & Francis Journals, vol. 50(10), pages 853-867, October.
    5. M.L.R. Varela & Vijay Kumar Manupati & Suraj Panigrahi & Eric Costa & Goran D. Putnik, 2020. "Using social network analysis for industrial plant layout analysis in the context of industry 4.0," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 34(1), pages 1-19.
    6. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Bian, Linkan & Si, Xiaosheng, 2019. "Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 88-100.
    7. Hossam A. Kishawy & Hussien Hegab & Elsadig Saad, 2018. "Design for Sustainable Manufacturing: Approach, Implementation, and Assessment," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    8. Zhan Gao & Qi-guo Hu & Xiang-yang Xu, 2020. "Residual Lifetime Prediction with Multistage Stochastic Degradation for Equipment," Complexity, Hindawi, vol. 2020, pages 1-10, November.
    9. Linkan Bian & Nagi Gebraeel & Jeffrey P. Kharoufeh, 2015. "Degradation modeling for real-time estimation of residual lifetimes in dynamic environments," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 471-486, May.
    10. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    11. Cipollini, Francesca & Oneto, Luca & Coraddu, Andrea & Murphy, Alan John & Anguita, Davide, 2018. "Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 12-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thirupathi Samala & Vijaya Kumar Manupati & Maria Leonilde R. Varela & Goran Putnik, 2021. "Investigation of Degradation and Upgradation Models for Flexible Unit Systems: A Systematic Literature Review," Future Internet, MDPI, vol. 13(3), pages 1-18, February.
    2. Hajiha, Mohammadmahdi & Liu, Xiao & Lee, Young M. & Ramin, Moghaddass, 2022. "A physics-regularized data-driven approach for health prognostics of complex engineered systems with dependent health states," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    7. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    10. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.
    11. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    13. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Gaurav Gaurav & Govind Sharan Dangayach & Makkhan Lal Meena & Vijay Chaudhary & Sumit Gupta & Sandeep Jagtap, 2023. "The Environmental Impacts of Bar Soap Production: Uncovering Sustainability Risks with LCA Analysis," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    15. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    16. Frauke Liers & Alexander Martin & Maximilian Merkert & Nick Mertens & Dennis Michaels, 2021. "Solving mixed-integer nonlinear optimization problems using simultaneous convexification: a case study for gas networks," Journal of Global Optimization, Springer, vol. 80(2), pages 307-340, June.
    17. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    18. Huang, Xucong & Peng, Zhaoqin & Tang, Diyin & Chen, Juan & Zio, Enrico & Zheng, Zaiping, 2024. "A physics-informed autoencoder for system health state assessment based on energy-oriented system performance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Walter Chipambwa & Richie Moalosi & Yaone Rapitsenyane & Olefile Bethuel Molwane, 2023. "Sustainable Design Orientation in Furniture-Manufacturing SMEs in Zimbabwe," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    20. K. Koppiahraj & S. Bathrinath & V. G. Venkatesh & Venkatesh Mani & Yangyan Shi, 2023. "Optimal sustainability assessment method selection: a practitioner perspective," Annals of Operations Research, Springer, vol. 324(1), pages 629-662, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5295-:d:551191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.