IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2524-d506298.html
   My bibliography  Save this article

Chilling and Heat Accumulation of Fruit and Nut Trees and Flower Bud Vulnerability to Early Spring Low Temperatures in New Mexico: Meteorological Approach

Author

Listed:
  • Koffi Djaman

    (Department of Plant and Environmental Sciences, Agricultural Science Center at Farmington, New Mexico State University, P.O. Box 1018, Farmington, NM 87499, USA)

  • Komlan Koudahe

    (Biological and Agricultural Engineering Department, Kansas State University, 1016 Seaton Hall 920 N. 17th St., Manhattan, KS 66506, USA)

  • Murali Darapuneni

    (Department of Plant and Environmental Science, Agricultural Science Center at Tucumcari, New Mexico State University, Tucumcari, NM 88401, USA)

  • Suat Irmak

    (Biological Systems Engineering Department, University of Nebraska-Lincoln, 239 L.W. Chase Hall, P.O. Box 830726, Lincoln, NE 68583, USA)

Abstract

Fruit and nut trees production is an important activity across the southwest United States and this production is greatly impacted by the local climate. Temperature is the main environmental factor influencing the growth and the productivity of the fruit and nut trees as it affects the trees’ physiology and the vulnerability of flower bud, flowers, and young fruit and nut to the low temperatures or spring frost. The objective of the present study is to estimate the chilling and heat accumulation of fruit and nut trees across New Mexico. Three study sites as Fabian Garcia, Los Lunas, and Farmington were considered and climate variables were collected at hourly time step. The Utah model and the Dynamic model were used to estimate the accumulated chilling while the Forcing model was used for the heat accumulation. The possible fruit and nut trees endodormancy and ecodormancy periods were also determined at the study sites. The results obtained chilling hours of 715 ± 86.60 h at Fabian Garcia, 729.53 ± 41.71 h at Los Lunas, and 828.95 ± 83.73 h at Farmington using the Utah model. The accumulated chill portions during trees’ endodormancy was 3.12 ± 3.05 CP at Fabian Garcia, 42.23 ± 5.08 CP at Los Lunas, and 56.14 ± 1.84 CP at Farmington. The accumulated heat was 8735.52 ± 1650.91 GDH at Fabian Garcia, 7695.43 ± 212.90 GDH at Los Lunas, and 5984.69 ± 2353.20 GDH at Farmington. The fruit and nut trees are at no risk of bud flowers vulnerability at Fabian Garcia while they are under high risk of bud flowers and or young fruit and nut vulnerability to low temperatures early spring as hourly temperature can still drop below 0 °C in April at the end of ecodormancy and flower blooming and young fruits and nuts development stage at Los Lunas and Farmington. Severe weather, especially frost conditions during winter and early spring, can be a significant threat to sustainable nut and fruit production in the northern New Mexico while high chilling requirement fruit and nut trees might not meet chill requirements in the southern New Mexico.

Suggested Citation

  • Koffi Djaman & Komlan Koudahe & Murali Darapuneni & Suat Irmak, 2021. "Chilling and Heat Accumulation of Fruit and Nut Trees and Flower Bud Vulnerability to Early Spring Low Temperatures in New Mexico: Meteorological Approach," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2524-:d:506298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guédon, Yann & Legave, Jean Michel, 2008. "Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context," Ecological Modelling, Elsevier, vol. 219(1), pages 189-199.
    2. Haïfa Benmoussa & Eike Luedeling & Mohamed Ghrab & Mehdi Ben Mimoun, 2020. "Severe winter chill decline impacts Tunisian fruit and nut orchards," Climatic Change, Springer, vol. 162(3), pages 1249-1267, October.
    3. Funes, Inmaculada & Aranda, Xavier & Biel, Carmen & Carbó, Joaquim & Camps, Francesc & Molina, Antonio J. & Herralde, Felicidad de & Grau, Beatriz & Savé, Robert, 2016. "Future climate change impacts on apple flowering date in a Mediterranean subbasin," Agricultural Water Management, Elsevier, vol. 164(P1), pages 19-27.
    4. Eduardo Fernandez & Cory Whitney & Italo F. Cuneo & Eike Luedeling, 2020. "Prospects of decreasing winter chill for deciduous fruit production in Chile throughout the 21st century," Climatic Change, Springer, vol. 159(3), pages 423-439, April.
    5. João A. Santos & Ricardo Costa & Helder Fraga, 2017. "Climate change impacts on thermal growing conditions of main fruit species in Portugal," Climatic Change, Springer, vol. 140(2), pages 273-286, January.
    6. Koffi Djaman & Curtis Owen & Margaret M. West & Samuel Allen & Komlan Koudahe & Murali Darapuneni & Michael O’Neill, 2020. "Relationship between Relative Maturity and Grain Yield of Maize ( Zea mays L.) Hybrids in Northwest New Mexico for the 2003–2019 Period," Agriculture, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    2. Boris Duralija, 2022. "Sustainable Fruit Growing: From Orchard to Table-Editorial Commentary," Sustainability, MDPI, vol. 14(3), pages 1-4, January.
    3. Teresa R. Freitas & João A. Santos & Ana P. Silva & André Fonseca & Helder Fraga, 2023. "Evaluation of historical and future thermal conditions for almond trees in north-eastern Portugal," Climatic Change, Springer, vol. 176(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pechan, Paul M. & Bohle, Heidi & Obster, Fabian, 2023. "Reducing vulnerability of fruit orchards to climate change," Agricultural Systems, Elsevier, vol. 210(C).
    2. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    4. Lu, Yongquan & Liu, Guilin & Xian, Yuyang & Tang, Jiaqi & Zhong, Liming, 2024. "Climate change brings both opportunities and challenges to rural revitalization in China: Evidence from apple geographical indication predictions," Agricultural Systems, Elsevier, vol. 216(C).
    5. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    6. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    7. Fraga, Helder & Santos, João A., 2018. "Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal," Agricultural Systems, Elsevier, vol. 164(C), pages 107-115.
    8. Teresa R. Freitas & João A. Santos & Ana P. Silva & André Fonseca & Helder Fraga, 2023. "Evaluation of historical and future thermal conditions for almond trees in north-eastern Portugal," Climatic Change, Springer, vol. 176(7), pages 1-21, July.
    9. Haïfa Benmoussa & Eike Luedeling & Mohamed Ghrab & Mehdi Ben Mimoun, 2020. "Severe winter chill decline impacts Tunisian fruit and nut orchards," Climatic Change, Springer, vol. 162(3), pages 1249-1267, October.
    10. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    11. Eduardo Fernandez & Lars Caspersen & Ilja Illert & Eike Luedeling, 2021. "Warm winters challenge the cultivation of temperate species in South America—a spatial analysis of chill accumulation," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    12. Jyoti Singh & Sandeep Sahany & Alan Robock, 2020. "Can stratospheric geoengineering alleviate global warming-induced changes in deciduous fruit cultivation? The case of Himachal Pradesh (India)," Climatic Change, Springer, vol. 162(3), pages 1323-1343, October.
    13. Manolis G. Grillakis & Evangelos G. Kapetanakis & Eleni Goumenaki, 2022. "Climate change implications for olive flowering in Crete, Greece: projections based on historical data," Climatic Change, Springer, vol. 175(1), pages 1-18, November.
    14. Ivica Buhiniček & Dražen Kaučić & Zdravko Kozić & Mirko Jukić & Jerko Gunjača & Hrvoje Šarčević & Domagoj Stepinac & Domagoj Šimić, 2021. "Trends in Maize Grain Yields across Five Maturity Groups in a Long-Term Experiment with Changing Genotypes," Agriculture, MDPI, vol. 11(9), pages 1-10, September.
    15. Laurie Houston & Susan Capalbo & Clark Seavert & Meghan Dalton & David Bryla & Ramesh Sagili, 2018. "Specialty fruit production in the Pacific Northwest: adaptation strategies for a changing climate," Climatic Change, Springer, vol. 146(1), pages 159-171, January.
    16. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Casalí, Javier, 2023. "Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain," Agricultural Water Management, Elsevier, vol. 285(C).
    17. Funes, Inmaculada & Aranda, Xavier & Biel, Carmen & Carbó, Joaquim & Camps, Francesc & Molina, Antonio J. & Herralde, Felicidad de & Grau, Beatriz & Savé, Robert, 2016. "Future climate change impacts on apple flowering date in a Mediterranean subbasin," Agricultural Water Management, Elsevier, vol. 164(P1), pages 19-27.
    18. Funes, I. & Savé, R. & de Herralde, F. & Biel, C. & Pla, E. & Pascual, D. & Zabalza, J. & Cantos, G. & Borràs, G. & Vayreda, J. & Aranda, X., 2021. "Modeling impacts of climate change on the water needs and growing cycle of crops in three Mediterranean basins," Agricultural Water Management, Elsevier, vol. 249(C).
    19. Rodríguez, Alfredo & Pérez-López, David & Centeno, Ana & Ruiz-Ramos, Margarita, 2021. "Viability of temperate fruit tree varieties in Spain under climate change according to chilling accumulation," Agricultural Systems, Elsevier, vol. 186(C).
    20. Atifullah Shinwari & Lars Caspersen & Katja Schiffers & Eike Luedeling, 2025. "Historical and future winter chill for temperate fruit and nut trees in Afghanistan," Climatic Change, Springer, vol. 178(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2524-:d:506298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.