IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1994-d498356.html
   My bibliography  Save this article

A Questionnaire Case Study of Opinions of Chinese Agricultural Workers on the Coordinated Control of Emissions of Ammonia

Author

Listed:
  • Muxue Liang

    (Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Hong Liao

    (Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Yue Huang

    (School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Zifang Qiao

    (School of Business, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Chenchen Tan

    (Energy and Environment Research Group, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Ruoxin Liu

    (School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

So far, China’s particulate pollution control is principally focused on primary particles and sulfur dioxide from coal combustion. The contribution of ammonia emissions to particulate matter with an aerodynamic equivalent diameter of less than or equal to 2.5 microns (PM2.5) has been increasingly emphasized. As a world-famous agricultural country with 523 million farmers (2017, National Bureau of Statistics of China), approximately 70.0–90.0% of China’s ammonia emissions come from agriculture. With such a huge population, agriculture industrialization (socioeconomic policies and technology upgrades to reduce ammonia emissions from fertilizers and livestock) has a large potential but is more vulnerable to costs compared to other industries. We need a solution involving both economic benefits and environmental protection. For this purpose, we sent out an anonymous questionnaire consisting of 16 questions to 420 farmers and conducted a field visit survey in a rural area of Jiangsu Province. Through statistical analysis, we found that the use of nitrogen fertilizers in agriculture, which are an important source of ammonia through volatilization, is normal (200/420 × 100% = 47.62% of farmers use such fertilizers). Among the 420 farmers surveyed, 90.71% of them have knowledge of air pollution from agricultural activities and 92.15% of them have certain understanding of agricultural industrialization policies, indicating that coordinated control of ammonia emissions can be achieved together with policy propaganda. Through factor analysis and correlation analysis, we find that the early propaganda of policies can help farmers to be more willing to accept the policies. The correlation coefficient between awareness of pollution and policy approval is 0.94, and that between policy publicity and policy approval is 0.95. Generally speaking, the promotion of policies is worth carrying out during the implementation process.

Suggested Citation

  • Muxue Liang & Hong Liao & Yue Huang & Zifang Qiao & Chenchen Tan & Ruoxin Liu, 2021. "A Questionnaire Case Study of Opinions of Chinese Agricultural Workers on the Coordinated Control of Emissions of Ammonia," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1994-:d:498356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenju Cai & Ke Li & Hong Liao & Huijun Wang & Lixin Wu, 2017. "Weather conditions conducive to Beijing severe haze more frequent under climate change," Nature Climate Change, Nature, vol. 7(4), pages 257-262, April.
    2. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    3. Sarah Rotz & Evan Fraser, 2015. "Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 459-473, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoliang Yun & Chen Yang & Shidong Ge, 2022. "Understanding Anthropogenic PM 2.5 Concentrations and Their Drivers in China during 1998–2016," IJERPH, MDPI, vol. 20(1), pages 1-18, December.
    2. Huanbi Yue & Chunyang He & Qingxu Huang & Da Zhang & Peijun Shi & Enayat A. Moallemi & Fangjin Xu & Yang Yang & Xin Qi & Qun Ma & Brett A. Bryan, 2024. "Substantially reducing global PM2.5-related deaths under SDG3.9 requires better air pollution control and healthcare," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ying Zhang & Song Xi Chen & Le Bao, 2023. "Air pollution estimation under air stagnation—A case study of Beijing," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    4. Xuechen Zhang & Huanfeng Shen & Tongwen Li & Liangpei Zhang, 2020. "The Effects of Fireworks Discharge on Atmospheric PM 2.5 Concentration in the Chinese Lunar New Year," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    5. Qianwen Cheng & Manchun Li & Feixue Li & Haoqing Tang, 2019. "Response of Global Air Pollutant Emissions to Climate Change and Its Potential Effects on Human Life Expectancy Loss," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    6. Zhiyuan Wang & Xiaoyi Shi & Chunhua Pan & Sisi Wang, 2021. "Spatial and Temporal Characteristics of Environmental Air Quality and Its Relationship with Seasonal Climatic Conditions in Eastern China during 2015–2018," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    7. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    8. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    9. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    10. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    11. Hongjun Yu & Jiali Cheng & Shelby Paige Gordon & Ruopeng An & Miao Yu & Xiaodan Chen & Qingli Yue & Jun Qiu, 2018. "Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    12. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    13. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    14. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    15. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    16. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    17. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    18. Qianqian Yang & Qiangqiang Yuan & Tongwen Li & Huanfeng Shen & Liangpei Zhang, 2017. "The Relationships between PM 2.5 and Meteorological Factors in China: Seasonal and Regional Variations," IJERPH, MDPI, vol. 14(12), pages 1-19, December.
    19. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    20. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1994-:d:498356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.