IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i24p9333-d461495.html
   My bibliography  Save this article

The Effects of Fireworks Discharge on Atmospheric PM 2.5 Concentration in the Chinese Lunar New Year

Author

Listed:
  • Xuechen Zhang

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China)

  • Huanfeng Shen

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
    State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)

  • Tongwen Li

    (School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China)

  • Liangpei Zhang

    (State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)

Abstract

Discharging fireworks during the Chinese Lunar New Year celebrations is a deep-rooted custom in China. In this paper, we analyze the effect of this cultural activity on PM 2.5 concentration using both ground observations and satellite data. By combining remote sensing data, the problem of uneven spatial distribution of ground monitoring has been compensated, and the research time span has been expanded. The results show that the extensive firework displays on New Year’s Eve lead to a remarkable increase in nationwide PM 2.5 concentration, which were 159~223% of the average level, indicating the instantaneous effect far exceeds that of any other factor over the whole year. However, the averaged PM 2.5 concentrations of the celebration period were 0.99~16.32 μg/m 3 lower compared to the average values of the corresponding pre-celebration period and post-celebration period, indicating the sustained effect is not very significant. The implementation of firework prohibition policies can greatly reduce the instantaneous PM 2.5 increase, but no obvious air quality improvement is observed over the entire celebration period. Combining these findings and the cultural significance of this activity, we recommend that this custom is actively maintained, using new technologies and scientific governance programs to minimize the negative effects.

Suggested Citation

  • Xuechen Zhang & Huanfeng Shen & Tongwen Li & Liangpei Zhang, 2020. "The Effects of Fireworks Discharge on Atmospheric PM 2.5 Concentration in the Chinese Lunar New Year," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9333-:d:461495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/24/9333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/24/9333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    2. Wenju Cai & Ke Li & Hong Liao & Huijun Wang & Lixin Wu, 2017. "Weather conditions conducive to Beijing severe haze more frequent under climate change," Nature Climate Change, Nature, vol. 7(4), pages 257-262, April.
    3. Mei Yang & Hong Fan & Kang Zhao, 2020. "Fine-Grained Spatiotemporal Analysis of the Impact of Restricting Factories, Motor Vehicles, and Fireworks on Air Pollution," IJERPH, MDPI, vol. 17(13), pages 1-22, July.
    4. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hujia Zhao & Ke Gui & Yanjun Ma & Yangfeng Wang & Yaqiang Wang & Hong Wang & Yu Zheng & Lei Li & Lei Zhang & Yuqi Zhang & Huizheng Che & Xiaoye Zhang, 2022. "Multi-Year Variation of Ozone and Particulate Matter in Northeast China Based on the Tracking Air Pollution in China (TAP) Data," IJERPH, MDPI, vol. 19(7), pages 1-23, March.
    2. Guoliang Yun & Chen Yang & Shidong Ge, 2022. "Understanding Anthropogenic PM 2.5 Concentrations and Their Drivers in China during 1998–2016," IJERPH, MDPI, vol. 20(1), pages 1-18, December.
    3. Muxue Liang & Hong Liao & Yue Huang & Zifang Qiao & Chenchen Tan & Ruoxin Liu, 2021. "A Questionnaire Case Study of Opinions of Chinese Agricultural Workers on the Coordinated Control of Emissions of Ammonia," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    4. Diyi Liu & Kun Cheng & Kevin Huang & Hui Ding & Tiantong Xu & Zhenni Chen & Yanqi Sun, 2022. "Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    5. Huanbi Yue & Chunyang He & Qingxu Huang & Da Zhang & Peijun Shi & Enayat A. Moallemi & Fangjin Xu & Yang Yang & Xin Qi & Qun Ma & Brett A. Bryan, 2024. "Substantially reducing global PM2.5-related deaths under SDG3.9 requires better air pollution control and healthcare," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ying Zhang & Song Xi Chen & Le Bao, 2023. "Air pollution estimation under air stagnation—A case study of Beijing," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    7. Muhammad Azher Hassan & Tariq Mehmood & Ehtisham Lodhi & Muhammad Bilal & Afzal Ahmed Dar & Junjie Liu, 2022. "Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly," IJERPH, MDPI, vol. 19(20), pages 1-31, October.
    8. Qianwen Cheng & Manchun Li & Feixue Li & Haoqing Tang, 2019. "Response of Global Air Pollutant Emissions to Climate Change and Its Potential Effects on Human Life Expectancy Loss," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    9. Zhang Hao & Qi Chenyue, 2021. "Impact of environmental and health consciousness on ecological consumption intention: The moderating effects of haze and self‐competence," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(4), pages 1292-1305, December.
    10. Zhiyuan Wang & Xiaoyi Shi & Chunhua Pan & Sisi Wang, 2021. "Spatial and Temporal Characteristics of Environmental Air Quality and Its Relationship with Seasonal Climatic Conditions in Eastern China during 2015–2018," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    11. Ruiqi Wang & Huanchen Tang & Xin Ma, 2022. "Can Carbon Emission Trading Policy Reduce PM2.5? Evidence from Hubei, China," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    12. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    13. Xiangxue Zhang & Changxiu Cheng, 2022. "Temporal and Spatial Heterogeneity of PM 2.5 Related to Meteorological and Socioeconomic Factors across China during 2000–2018," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
    14. Yi Liu & Jingjie Sun & Yannong Gou & Xiubin Sun & Xiujun Li & Zhongshang Yuan & Lizhi Kong & Fuzhong Xue, 2018. "A Multicity Analysis of the Short-Term Effects of Air Pollution on the Chronic Obstructive Pulmonary Disease Hospital Admissions in Shandong, China," IJERPH, MDPI, vol. 15(4), pages 1-15, April.
    15. Nishit Aman & Kasemsan Manomaiphiboon & Natchanok Pala-En & Bikash Devkota & Muanfun Inerb & Eakkachai Kokkaew, 2023. "A Study of Urban Haze and Its Association with Cold Surge and Sea Breeze for Greater Bangkok," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    16. Li Li & Peng Deng & Jun Wang & Zixuan Wang & Junwei Sun, 2021. "Retrospect and Outlook of Research on Regional Haze Pollution in China: A Systematic Literature Review," IJERPH, MDPI, vol. 18(21), pages 1-27, November.
    17. Dejun Wan & Changlin Zhan & Guanglin Yang & Xingqi Liu & Jinsong Yang, 2016. "Preliminary Assessment of Health Risks of Potentially Toxic Elements in Settled Dust over Beijing Urban Area," IJERPH, MDPI, vol. 13(5), pages 1-15, May.
    18. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    19. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    20. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9333-:d:461495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.