IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1678-d493220.html
   My bibliography  Save this article

Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam

Author

Listed:
  • Dengfeng Yang

    (School of Science, Qingdao University of Technology, Qingdao 266033, China
    Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao 266033, China)

Abstract

Because the first-weighting of a main roof with a large mining height has obvious sudden characteristics and is more severe, which causes large-scale support crushing and has a great impact on the ecological environment of the mining area, it is necessary to conduct an in-depth analysis. This paper studies the mechanical mechanism and asymmetric fracture conditions of a main roof with a large mining height, with the first-weighting occurring in a shallow coal seam. In combination with an asymmetric three-hinged arch structural model, the main roof was regarded as a finite plate model with a crack, and a fracture-mechanics model was established. The conditions and main controlling factors of main roof fracture asymmetry were analyzed, and the determination methods of the first-weighting interval and support resistance were further analyzed. The results show that the stress concentration and the stress-intensity factor increase at the crack tip with the advancement of the face; when the stress-intensity factors increase beyond the critical value, the crack expands until the first-weighting. The sufficient condition for modeling the instability was the length s of the branch crack reaching the protection thickness H of the main roof, and the necessary condition was the activation of the crack. The calculation equations of the first-weighting interval and the support resistance were obtained. The influence weights of each parameter on the support resistance are ordered as follows: overburden load q > rock fracture toughness K C > crack length a > main roof thickness h > weighting interval l . Finally, the theoretical analysis results were verified by an in situ monitoring case of the no. 33,206 working face in the Bulianta coal mine, China. On this basis, a reasonable value of the support resistance is further calculated. The results mentioned above can provide a new method for researching the first-weighting of the main roof and can improve the accuracy of the roof control analysis. The research on the mechanisms of first-weighting and the support resistance can effectively promote the safety production of mine, which is in line with the concept of green and sustainable development of the mine.

Suggested Citation

  • Dengfeng Yang, 2021. "Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1678-:d:493220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu Li & Jialin Xu & Shengchao Yu & Jinfeng Ju & Jingmin Xu, 2018. "Mechanism and Prevention of a Chock Support Failure in the Longwall Top-Coal Caving Faces: A Case Study in Datong Coalfield, China," Energies, MDPI, vol. 11(2), pages 1-17, January.
    2. Peng Huang & Feng Ju & Kashi Vishwanath Jessu & Meng Xiao & Shuai Guo, 2017. "Optimization and Practice of Support Working Resistance in Fully-Mechanized Top Coal Caving in Shallow Thick Seam," Energies, MDPI, vol. 10(9), pages 1-12, September.
    3. Dawid Szurgacz & Jarosław Brodny, 2019. "Analysis of the Influence of Dynamic Load on the Work Parameters of a Powered Roof Support’s Hydraulic Leg," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    4. Dawid Szurgacz & Jarosław Brodny, 2019. "Tests of Geometry of the Powered Roof Support Section," Energies, MDPI, vol. 12(20), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Wang & Benkun Tan & Shengtao Xiang & Xie Wang, 2022. "Fatigue Crack Propagation and Life Analysis of Stud Connectors in Steel-Concrete Composite Structures," Sustainability, MDPI, vol. 14(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    2. Malte Scharf & Ludger Heide & Alexander Grahle & Anne Magdalene Syré & Dietmar Göhlich, 2020. "Environmental Impact of Subsidy Concepts for Stimulating Car Sales in Germany," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Feng Cui & Yanbin Yang & Xingping Lai & Chong Jia & Pengfei Shan, 2019. "Experimental Study on the Effect of Advancing Speed and Stoping Time on the Energy Release of Overburden in an Upward Mining Coal Working Face with a Hard Roof," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    4. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    5. Magdalena Tutak, 2019. "The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    6. Faham Tahmasebinia & Chengguo Zhang & Ismet Canbulat & Samad Sepasgozar & Serkan Saydam, 2020. "A Novel Damage Model for Strata Layers and Coal Mass," Energies, MDPI, vol. 13(8), pages 1-17, April.
    7. Rasa Smaliukiene & Svajone Bekesiene, 2020. "Towards Sustainable Human Resources: How Generational Differences Impact Subjective Wellbeing in the Military?," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    8. Jun Guo & Guorui Feng & Pengfei Wang & Tingye Qi & Xiaorong Zhang & Yonggan Yan, 2018. "Roof Strata Behavior and Support Resistance Determination for Ultra-Thick Longwall Top Coal Caving Panel: A Case Study of the Tashan Coal Mine," Energies, MDPI, vol. 11(5), pages 1-19, April.
    9. Zhu Li & Jialin Xu & Shengchao Yu & Jinfeng Ju & Jingmin Xu, 2018. "Mechanism and Prevention of a Chock Support Failure in the Longwall Top-Coal Caving Faces: A Case Study in Datong Coalfield, China," Energies, MDPI, vol. 11(2), pages 1-17, January.
    10. Qingxiang Huang & Yanpeng He, 2019. "Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock," Energies, MDPI, vol. 12(21), pages 1-22, November.
    11. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    12. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    13. Haojie Xue & Yubing Gao & Xingyu Zhang & Xichun Tian & Haosen Wang & Di Yuan, 2019. "Directional Blasting Fracturing Technology for the Stability Control of Key Strata in Deep Thick Coal Mining," Energies, MDPI, vol. 12(24), pages 1-19, December.
    14. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    15. Yi Yang & Xinwei Li & Huamin Li & Dongyin Li & Ruifu Yuan, 2020. "Deep Q-Network for Optimal Decision for Top-Coal Caving," Energies, MDPI, vol. 13(7), pages 1-14, April.
    16. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    17. Jia Liu & Fengshan Ma & Jie Guo & Guang Li & Yewei Song & Yang Wan, 2022. "A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    18. Qingliang Zeng & Zhaoji Li & Lirong Wan & Dejian Ma & Jiantao Wang, 2022. "Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load," Energies, MDPI, vol. 15(13), pages 1-20, June.
    19. Zhanjie Feng & Wenbing Guo & Feiya Xu & Daming Yang & Weiqiang Yang, 2019. "Control Technology of Surface Movement Scope with Directional Hydraulic Fracturing Technology in Longwall Mining: A Case Study," Energies, MDPI, vol. 12(18), pages 1-18, September.
    20. Yanpeng He & Qingxiang Huang, 2023. "Simulation Study on Spatial Form of the Suspended Roof Structure of Working Face in Shallow Coal Seam," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1678-:d:493220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.