IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1041-d142989.html
   My bibliography  Save this article

Roof Strata Behavior and Support Resistance Determination for Ultra-Thick Longwall Top Coal Caving Panel: A Case Study of the Tashan Coal Mine

Author

Listed:
  • Jun Guo

    (College of Mining Engineering, Taiyuan University of Technology, Shanxi 030024, China
    Shanxi Province Research Center of Green Mining Engineering Technology, Shanxi 030024, China)

  • Guorui Feng

    (College of Mining Engineering, Taiyuan University of Technology, Shanxi 030024, China
    Shanxi Province Research Center of Green Mining Engineering Technology, Shanxi 030024, China)

  • Pengfei Wang

    (College of Mining Engineering, Taiyuan University of Technology, Shanxi 030024, China
    Shanxi Province Research Center of Green Mining Engineering Technology, Shanxi 030024, China)

  • Tingye Qi

    (College of Mining Engineering, Taiyuan University of Technology, Shanxi 030024, China
    Shanxi Province Research Center of Green Mining Engineering Technology, Shanxi 030024, China)

  • Xiaorong Zhang

    (Datong Coal Mine Group Company, Datong 037003, China)

  • Yonggan Yan

    (College of Mining Engineering, Taiyuan University of Technology, Shanxi 030024, China
    Shanxi Province Research Center of Green Mining Engineering Technology, Shanxi 030024, China)

Abstract

The Longwall Top Coal Caving (LTCC) method has greatly improved the production of ultra-thick underground coal resources. However, face fall and support closure have been becoming highly frequent accidents at the working face, and seriously threaten the safety of miners. The key to avoiding these problems is to reveal the structural evolution of the roof strata and then choose a reasonable working resistance for the hydraulic supports. According to physical modeling, theoretical analysis and field observation of the LTCC panel, four kinds of structural models can be found and defined, in consideration of the coincident movement of key strata (KS) and the mining activities of upper face in overburden strata. The KS are performed as cantilever structures, hinged structures and voussoir beam structures at three different positions in roof strata. The structural characteristics of the KS and its movement laws are shown in the four structural modes. The loads acting on the support in the four typical structural models are also analyzed. The structural instability of the broken roof strata on the upper caving panel caused by the lower ultra-thick coal seam mining is considered to be the main reason for its face’s falls and support failures. Consequently, a method is proposed for calculating the working resistance of the support in the LTCC face, which is verified by the mining pressure monitoring in practice.

Suggested Citation

  • Jun Guo & Guorui Feng & Pengfei Wang & Tingye Qi & Xiaorong Zhang & Yonggan Yan, 2018. "Roof Strata Behavior and Support Resistance Determination for Ultra-Thick Longwall Top Coal Caving Panel: A Case Study of the Tashan Coal Mine," Energies, MDPI, vol. 11(5), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1041-:d:142989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Zhou & Jixiong Zhang & Hao Yan & Meng Li, 2017. "Deformation Behavior of Hard Roofs in Solid Backfill Coal Mining Using Physical Models," Energies, MDPI, vol. 10(4), pages 1-20, April.
    2. Wei-bin Guo & Hong-sheng Wang & Guo-wei Dong & Lei Li & Yao-guang Huang, 2017. "A Case Study of Effective Support Working Resistance and Roof Support Technology in Thick Seam Fully-Mechanized Face Mining with Hard Roof Conditions," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    3. Peng Huang & Feng Ju & Kashi Vishwanath Jessu & Meng Xiao & Shuai Guo, 2017. "Optimization and Practice of Support Working Resistance in Fully-Mechanized Top Coal Caving in Shallow Thick Seam," Energies, MDPI, vol. 10(9), pages 1-12, September.
    4. Meng Li & Nan Zhou & Jixiong Zhang & Zhicheng Liu, 2017. "Numerical Modelling of Mechanical Behavior of Coal Mining Hard Roofs in Different Backfill Ratios: A Case Study," Energies, MDPI, vol. 10(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingyuan Wen & Anye Cao & Wenhao Guo & Chengchun Xue & Guowei Lv & Xianlei Yan, 2023. "Strata Movement and Mining-Induced Stress Identification for an Isolated Working Face Surrounded by Two Goafs," Energies, MDPI, vol. 16(6), pages 1-18, March.
    2. Yang Yu & Xiangyu Wang & Jianbiao Bai & Lianying Zhang & Hongchun Xia, 2020. "Deformation Mechanism and Stability Control of Roadway Surrounding Rock with Compound Roof: Research and Applications," Energies, MDPI, vol. 13(6), pages 1-19, March.
    3. Wenlong Shen & Meng Wang & Zhengzheng Cao & Faqiang Su & Hua Nan & Xuelong Li, 2019. "Mining-Induced Failure Criteria of Interactional Hard Roof Structures: A Case Study," Energies, MDPI, vol. 12(15), pages 1-17, August.
    4. Yubing Huang & Bei Jiang & Yukun Ma & Huayong Wei & Jincheng Zang & Xiang Gao, 2021. "Study on Asymmetric Failure and Control Measures of Lining in Deep Large Section Chamber," Energies, MDPI, vol. 14(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ningbo Zhang & Changyou Liu & Baobao Chen, 2018. "A Case Study of Presplitting Blasting Parameters of Hard and Massive Roof Based on the Interaction between Support and Overlying Strata," Energies, MDPI, vol. 11(6), pages 1-14, May.
    2. Wenlong Shen & Meng Wang & Zhengzheng Cao & Faqiang Su & Hua Nan & Xuelong Li, 2019. "Mining-Induced Failure Criteria of Interactional Hard Roof Structures: A Case Study," Energies, MDPI, vol. 12(15), pages 1-17, August.
    3. Qiang Fu & Ke Yang & Xiang He & Zhen Wei & Qinggan Yang, 2022. "Characteristics of Strata Behavior and Differentiated Control of Fully Mechanized Mining Working Face with Abnormal Roof," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    4. Zhu Li & Jialin Xu & Shengchao Yu & Jinfeng Ju & Jingmin Xu, 2018. "Mechanism and Prevention of a Chock Support Failure in the Longwall Top-Coal Caving Faces: A Case Study in Datong Coalfield, China," Energies, MDPI, vol. 11(2), pages 1-17, January.
    5. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    6. Guojun Zhang & Quansheng Li & Zhuhe Xu & Yong Zhang, 2022. "Roof Fractures of Near-Vertical and Extremely Thick Coal Seams in Horizontally Grouped Top-Coal Drawing Method Based on the Theory of a Thin Plate," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    7. Yanpeng He & Qingxiang Huang, 2023. "Simulation Study on Spatial Form of the Suspended Roof Structure of Working Face in Shallow Coal Seam," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    8. Yao Lu & Ning Jiang & Wei Lu & Meng Zhang & Dezhi Kong & Mengtang Xu & Changxiang Wang, 2022. "Experimental Study on Deformation Characteristics of Gangue Backfill Zone under the Condition of Natural Water in Deep Mines," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    9. Yihe Yu & Liqiang Ma & Dongsheng Zhang, 2019. "Characteristics of Roof Ground Subsidence While Applying a Continuous Excavation Continuous Backfill Method in Longwall Mining," Energies, MDPI, vol. 13(1), pages 1-20, December.
    10. Yaqiang Gong & Guangli Guo & Guojian Zhang & Kaikai Guo & Qiu Du & Liping Wang, 2021. "A Vertical Joint Spacing Calculation Method for UDEC Modeling of Large-Scale Strata and Its Influence on Mining-Induced Surface Subsidence," Sustainability, MDPI, vol. 13(23), pages 1-14, December.
    11. Lirong Wan & Xuehui Yu & Dejian Ma & Zhaosheng Meng & Qingliang Zeng & Guoqing Qi, 2022. "Dynamic Response Analysis of a Novel Anti-Impact Pressure Balance Jack," Energies, MDPI, vol. 15(14), pages 1-15, July.
    12. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    13. Xinguo Zhang & Jia Lin & Jinxiao Liu & Fei Li & Zhenzhong Pang, 2017. "Investigation of Hydraulic-Mechanical Properties of Paste Backfill Containing Coal Gangue-Fly Ash and Its Application in an Underground Coal Mine," Energies, MDPI, vol. 10(9), pages 1-19, September.
    14. Hengjie Luan & Yujing Jiang & Huili Lin & Yahua Wang, 2017. "A New Thin Seam Backfill Mining Technology and Its Application," Energies, MDPI, vol. 10(12), pages 1-16, December.
    15. Dawid Szurgacz & Jarosław Brodny, 2019. "Analysis of the Influence of Dynamic Load on the Work Parameters of a Powered Roof Support’s Hydraulic Leg," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    16. Dengfeng Yang, 2021. "Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam," Sustainability, MDPI, vol. 13(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1041-:d:142989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.