IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4208-d283498.html
   My bibliography  Save this article

Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock

Author

Listed:
  • Qingxiang Huang

    (School of Energy Engineering, Xi’an University of Science and Technology, Shaanxi, Xi’an 710054, China
    Key Laboratory of Western Mine Exploitation and Hazard Prevention with Ministry of Education, Xi’an University of Science and Technology, Shaanxi, Xi’an 710054, China)

  • Yanpeng He

    (School of Energy Engineering, Xi’an University of Science and Technology, Shaanxi, Xi’an 710054, China
    Key Laboratory of Western Mine Exploitation and Hazard Prevention with Ministry of Education, Xi’an University of Science and Technology, Shaanxi, Xi’an 710054, China)

Abstract

The overburden movement of the large mining height working face of shallow buried thin bedrock (SBTB) is a complex engineering problem with “time-space-intension”, which is of great significance to realize efficient and safe mining in the northern Shaanxi mining area. Based on the research object of No. 22201 working face in Zhangjiamao Coal Mine, the roof structure characteristics of large mining height working face in SBTB are researched by field drilling measurement, laboratory test, physical and numerical simulation. The results show that: (1) Based on the measured data of the drillholes, it is concluded that under the mining conditions of SBTB with large mining height, the roof movement is ahead of the weighting of the working face, and the working resistance has a significant time effect. The advanced movement distance is about 20 m, which can be used as an early warning index of the weighting. The lag movement distance in the roof with horizon of 30 m is two periodic weighting intervals, which are about 26 m. (2) The first weighting interval of the working face is 32 m. The roof first break has obvious step sinking phenomenon, and the measured surface appears at a position 45 m away from the transport slot. It is statistically concluded that the periodic weighting interval is 9.5~16.5 m, the average weighting interval is 13 m, which is equivalent to the periodic dynamic crack spacing of the surface. (3) The results of field measurement and physical simulation show that the breaking angle of the roof of the No. 22201 large mining height is about 66°, and the periodic stepping distance of the T-junction suspension area is 6~8m. Along the strike of the working face, the roof breaking is mainly arc arched. The research results ensure the safe and green mining of shallow coal seam.

Suggested Citation

  • Qingxiang Huang & Yanpeng He, 2019. "Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock," Energies, MDPI, vol. 12(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4208-:d:283498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawid Szurgacz & Jarosław Brodny, 2019. "Analysis of the Influence of Dynamic Load on the Work Parameters of a Powered Roof Support’s Hydraulic Leg," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    2. Qingxiang Huang & Yanpeng He & Jian Cao, 2019. "Experimental Investigation on Crack Development Characteristics in Shallow Coal Seam Mining in China," Energies, MDPI, vol. 12(7), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijie Hong & Zhenhua Li & Feng Du & Zhengzheng Cao & Chun Zhu, 2023. "Study on the Evolution Law of Deep Rock Cracks and the Mechanism of Graded Gradient Support," Energies, MDPI, vol. 16(3), pages 1-12, January.
    2. Yanpeng He & Qingxiang Huang, 2023. "Simulation Study on Spatial Form of the Suspended Roof Structure of Working Face in Shallow Coal Seam," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    3. Qingxiang Huang & Yanpeng He & Feng Li, 2020. "Research on the Roof Advanced Breaking Position and Influences of Large Mining Height Working Face in Shallow Coal Seam," Energies, MDPI, vol. 13(7), pages 1-15, April.
    4. Xiaoping Shao & Xin Li & Long Wang & Zhiyu Fang & Bingchao Zhao & Ershuai Liu & Yeqing Tao & Lang Liu, 2020. "Study on the Pressure-Bearing Law of Backfilling Material Based on Three-Stage Strip Backfilling Mining," Energies, MDPI, vol. 13(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoping Shao & Xin Li & Long Wang & Zhiyu Fang & Bingchao Zhao & Ershuai Liu & Yeqing Tao & Lang Liu, 2020. "Study on the Pressure-Bearing Law of Backfilling Material Based on Three-Stage Strip Backfilling Mining," Energies, MDPI, vol. 13(1), pages 1-16, January.
    2. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    3. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    4. Malte Scharf & Ludger Heide & Alexander Grahle & Anne Magdalene Syré & Dietmar Göhlich, 2020. "Environmental Impact of Subsidy Concepts for Stimulating Car Sales in Germany," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Feng Cui & Yanbin Yang & Xingping Lai & Chong Jia & Pengfei Shan, 2019. "Experimental Study on the Effect of Advancing Speed and Stoping Time on the Energy Release of Overburden in an Upward Mining Coal Working Face with a Hard Roof," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    6. Xiuchang Shi & Jixing Zhang, 2021. "Characteristics of Overburden Failure and Fracture Evolution in Shallow Buried Working Face with Large Mining Height," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    7. Jia Liu & Fengshan Ma & Jie Guo & Guang Li & Yewei Song & Yang Wan, 2022. "A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    8. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    9. Qingliang Zeng & Zhaoji Li & Lirong Wan & Dejian Ma & Jiantao Wang, 2022. "Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load," Energies, MDPI, vol. 15(13), pages 1-20, June.
    10. Qingxiang Huang & Yanpeng He & Feng Li, 2020. "Research on the Roof Advanced Breaking Position and Influences of Large Mining Height Working Face in Shallow Coal Seam," Energies, MDPI, vol. 13(7), pages 1-15, April.
    11. Magdalena Tutak, 2019. "The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    12. Yanpeng He & Qingxiang Huang, 2023. "Simulation Study on Spatial Form of the Suspended Roof Structure of Working Face in Shallow Coal Seam," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    13. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    14. Faham Tahmasebinia & Chengguo Zhang & Ismet Canbulat & Samad Sepasgozar & Serkan Saydam, 2020. "A Novel Damage Model for Strata Layers and Coal Mass," Energies, MDPI, vol. 13(8), pages 1-17, April.
    15. Feng Cui & Tinghui Zhang & Xingping Lai & Jiantao Cao & Pengfei Shan, 2019. "Study on the Evolution Law of Overburden Breaking Angle under Repeated Mining and the Application of Roof Pressure Relief," Energies, MDPI, vol. 12(23), pages 1-20, November.
    16. Lirong Wan & Xuehui Yu & Dejian Ma & Zhaosheng Meng & Qingliang Zeng & Guoqing Qi, 2022. "Dynamic Response Analysis of a Novel Anti-Impact Pressure Balance Jack," Energies, MDPI, vol. 15(14), pages 1-15, July.
    17. Rasa Smaliukiene & Svajone Bekesiene, 2020. "Towards Sustainable Human Resources: How Generational Differences Impact Subjective Wellbeing in the Military?," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    18. Lintian Miao & Zhonghui Duan & Yucheng Xia & Rongjun Du & Tingting Lv & Xueyang Sun, 2022. "Analysis of Factors Influencing Mining Damage Based on Engineering Detection and Machine Learning," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    19. Feng Cui & Chong Jia & Xingping Lai, 2019. "Study on Deformation and Energy Release Characteristics of Overlying Strata under Different Mining Sequence in Close Coal Seam Group Based on Similar Material Simulation," Energies, MDPI, vol. 12(23), pages 1-30, November.
    20. Xueyi Yu & Chi Mu & Dongdong Zhang, 2020. "Assessment of Land Reclamation Benefits in Mining Areas Using Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 12(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4208-:d:283498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.