IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p16-d299298.html
   My bibliography  Save this article

The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane

Author

Listed:
  • Magdalena Tutak

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

One of the main problems related to the excavation of dog headings in coal beds is the emission of methane during this process. To prevent the occurrence of dangerous concentration levels of this gas, it is necessary to use an appropriate ventilation system. The operation effectiveness of such a system depends on a number of mining, geological, technical and organizational factors. One of them includes the size and permeability of the fractures zone formed around the excavated dog heading. The primary objective of the paper is to determine the influence of this zone on the ventilation parameters, including the concentration and distribution of methane in the excavated dog heading. In order to achieve the assumed objective, multivariate model-based tests were carried out, which reproduce a real-world dog heading. Literature data and test results in actual conditions were used to determine the size and permeability of the fractures zone around the excavated heading. These data served as the basis to develop a model of the region under analysis and adopt boundary conditions. The analyses were carried out for four permeability values of the fractures zone and for two volumetric flow rates of the air stream supplied to the heading. The results were used to determine the influence of the fractures zone on the distribution and concentration of methane in the heading under analysis. The model-based tests were performed using ANSYS Fluent software. The idea to take into account the fractures zone around the heading represents a new approach to the analysis of ventilation parameters in underground mine headings. The results clearly indicate that this zone affects the ventilation parameters in the heading, including the distribution and concentration of methane. The knowledge obtained from the tests should be used to optimize the ventilation process of dog headings. All authors have read and agreed to the published version of the manuscript.

Suggested Citation

  • Magdalena Tutak, 2019. "The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:16-:d:299298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong Zhao & Tao Gao & Yulin Ma & Zengchao Feng, 2018. "Methane Desorption Characteristics of Coal at Different Water Injection Pressures Based on Pore Size Distribution Law," Energies, MDPI, vol. 11(9), pages 1-17, September.
    2. Torgrim Log & Wegar Bjerkeli Pedersen, 2019. "A Common Risk Classification Concept for Safety Related Gas Leaks and Fugitive Emissions?," Energies, MDPI, vol. 12(21), pages 1-17, October.
    3. Dawid Szurgacz & Jarosław Brodny, 2019. "Analysis of the Influence of Dynamic Load on the Work Parameters of a Powered Roof Support’s Hydraulic Leg," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    4. Dawid Szurgacz & Jarosław Brodny, 2019. "Tests of Geometry of the Powered Roof Support Section," Energies, MDPI, vol. 12(20), pages 1-19, October.
    5. Magdalena Tutak & Jarosław Brodny, 2018. "Analysis of the Impact of Auxiliary Ventilation Equipment on the Distribution and Concentration of Methane in the Tailgate," Energies, MDPI, vol. 11(11), pages 1-28, November.
    6. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasa Smaliukiene & Svajone Bekesiene, 2020. "Towards Sustainable Human Resources: How Generational Differences Impact Subjective Wellbeing in the Military?," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    2. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    3. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    4. Faham Tahmasebinia & Chengguo Zhang & Ismet Canbulat & Samad Sepasgozar & Serkan Saydam, 2020. "A Novel Damage Model for Strata Layers and Coal Mass," Energies, MDPI, vol. 13(8), pages 1-17, April.
    5. Malte Scharf & Ludger Heide & Alexander Grahle & Anne Magdalene Syré & Dietmar Göhlich, 2020. "Environmental Impact of Subsidy Concepts for Stimulating Car Sales in Germany," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    6. Feng Cui & Yanbin Yang & Xingping Lai & Chong Jia & Pengfei Shan, 2019. "Experimental Study on the Effect of Advancing Speed and Stoping Time on the Energy Release of Overburden in an Upward Mining Coal Working Face with a Hard Roof," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    7. Dengfeng Yang, 2021. "Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    8. Hesam Dehghani & Marc Bascompta & Ali Asghar Khajevandi & Kiana Afshar Farnia, 2023. "A Mimic Model Approach for Impact Assessment of Mining Activities on Sustainable Development Indicators," Sustainability, MDPI, vol. 15(3), pages 1-15, February.
    9. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    10. Piotr Strzałkowski, 2022. "Predicting Mining Areas Deformations under the Condition of High Strength and Depth of Cover," Energies, MDPI, vol. 15(13), pages 1-17, June.
    11. Jia Liu & Fengshan Ma & Jie Guo & Guang Li & Yewei Song & Yang Wan, 2022. "A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    12. Huiuk Yi & Minsik Kim & Dongkil Lee & Jongmyung Park, 2022. "Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development," Energies, MDPI, vol. 15(22), pages 1-24, November.
    13. Dawid Szurgacz & Jarosław Brodny, 2019. "Tests of Geometry of the Powered Roof Support Section," Energies, MDPI, vol. 12(20), pages 1-19, October.
    14. Qingxiang Huang & Yanpeng He, 2019. "Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock," Energies, MDPI, vol. 12(21), pages 1-22, November.
    15. Qingliang Zeng & Zhaoji Li & Lirong Wan & Dejian Ma & Jiantao Wang, 2022. "Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load," Energies, MDPI, vol. 15(13), pages 1-20, June.
    16. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    17. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    18. Yanpeng He & Qingxiang Huang, 2023. "Simulation Study on Spatial Form of the Suspended Roof Structure of Working Face in Shallow Coal Seam," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    19. Lin Li & Tiantian Liu & Zhiqiang Li & Xiangjun Chen & Lin Wang & Shuailong Feng, 2023. "Different Prevention Effects of Ventilation Dilution on Methane Accumulation at High Temperature Zone in Coal Mine Goafs," Energies, MDPI, vol. 16(7), pages 1-18, March.
    20. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:16-:d:299298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.