IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8405-d968788.html
   My bibliography  Save this article

Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development

Author

Listed:
  • Huiuk Yi

    (Korea Institute of Geoscience & Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

  • Minsik Kim

    (Korea Institute of Geoscience & Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

  • Dongkil Lee

    (Korea Institute of Geoscience & Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

  • Jongmyung Park

    (Korea Institute of Geoscience & Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350, Korea)

Abstract

In this paper, the application status of computational fluid dynamics (CFD) modeling in mine ventilation is presented by reviewing papers published since the year 2000. The aspects covered in these papers are the numerical analyses of working faces, mine tunnels, ventilation systems, and open-pit mines. CFD modeling procedures for mine ventilation are summarized. Further, building geometries, grid generation, solutions of equations, model validation, grid-independence studies, and solution convergence are discussed. Several examples of CFD modeling for mine ventilation are provided. Finally, conclusions including recommendations for future studies that may allow for more advantageous applications of such numerical simulations are provided.

Suggested Citation

  • Huiuk Yi & Minsik Kim & Dongkil Lee & Jongmyung Park, 2022. "Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development," Energies, MDPI, vol. 15(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8405-:d:968788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Wang & Shuguang Jiang & Xiaoping Ma & Zhengyan Wu & Hao Shao & Weiqing Zhang & Chuanbo Cui, 2016. "Numerical simulation and application study on a remote emergency rescue system during a belt fire in coal mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1463-1485, November.
    2. Tomasz Janoszek & Zbigniew Lubosik & Lucjan Świerczek & Andrzej Walentek & Jerzy Jaroszewicz, 2021. "Experimental and CFD Simulations of the Aerosol Flow in the Air Ventilating the Underground Excavation in Terms of SARS-CoV-2 Transmission," Energies, MDPI, vol. 14(16), pages 1-23, August.
    3. Hua, Yun & Nie, Wen & Liu, Qiang & Yin, Shuai & Peng, Huitian, 2020. "Effect of wind curtain on dust extraction in rock tunnel working face: CFD and field measurement analysis," Energy, Elsevier, vol. 197(C).
    4. Zhiyong Zhou & Yimeng Cui & Long Tian & Jianhong Chen & Wei Pan & Shan Yang & Pei Hu, 2019. "Study of the Influence of Ventilation Pipeline Setting on Cooling Effects in High-Temperature Mines," Energies, MDPI, vol. 12(21), pages 1-16, October.
    5. Jakub Janus & Jerzy Krawczyk, 2021. "Measurement and Simulation of Flow in a Section of a Mine Gallery," Energies, MDPI, vol. 14(16), pages 1-15, August.
    6. Florencio Fernánez-Alaiz & Ana Maria Castañón & Fernando Gómez-Fernández & Antonio Bernardo-Sánchez & Marc Bascompta, 2020. "Analysis of the Fire Propagation in a Sublevel Coal Mine," Energies, MDPI, vol. 13(14), pages 1-16, July.
    7. Magdalena Tutak & Jarosław Brodny, 2018. "Analysis of the Impact of Auxiliary Ventilation Equipment on the Distribution and Concentration of Methane in the Tailgate," Energies, MDPI, vol. 11(11), pages 1-28, November.
    8. Dariusz Obracaj & Marek Korzec & Paweł Deszcz, 2021. "Study on Methane Distribution in the Face Zone of the Fully Mechanized Roadway with Overlap Auxiliary Ventilation System," Energies, MDPI, vol. 14(19), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Semin & Lev Levin, 2023. "Mathematical Modeling of Air Distribution in Mines Considering Different Ventilation Modes," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    2. Jie Hou & Gang Nie & Guoqing Li & Wei Zhao & Baoli Sheng, 2023. "Optimization of Branch Airflow Volume for Mine Ventilation Network Based on Sensitivity Matrix," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    3. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Tutak & Jarosław Brodny & Dawid Szurgacz & Leszek Sobik & Sergey Zhironkin, 2020. "The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study," Energies, MDPI, vol. 13(18), pages 1-31, September.
    2. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    3. Jielin Li & Xiaoli Yu & Chonghong Huang & Keping Zhou, 2022. "Research on the Mobile Refrigeration System at a High Temperature Working Face of an Underground Mine," Energies, MDPI, vol. 15(11), pages 1-15, May.
    4. Torgrim Log & Wegar Bjerkeli Pedersen, 2019. "A Common Risk Classification Concept for Safety Related Gas Leaks and Fugitive Emissions?," Energies, MDPI, vol. 12(21), pages 1-17, October.
    5. Lindong Liu & Cuifeng Du & Yuan Wang & Jianwu Chen & Bin Yang & Weibo Jin, 2023. "Simulation Experiment Research of Mine Roadway Simulating Test Device with Adjustable Wind Velocity and Temperature and Humidity," IJERPH, MDPI, vol. 20(5), pages 1-11, February.
    6. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.
    7. Lu, Xin-xiao & Wang, Cheng-yan & Shen, Cong & Wang, Ming-yang & Xing, Yun, 2022. "Verisimilar research on the dust movement in the underground tunneling at the roadheader cutterhead dynamic rotation," Energy, Elsevier, vol. 238(PC).
    8. Dimosthenis Kotsopoulos, 2022. "Organizational Energy Conservation Matters in the Anthropocene," Energies, MDPI, vol. 15(21), pages 1-30, November.
    9. Tian, Zhang & Mu, Xinsheng & Deji, Jing & Shaocheng, Ge & Xiangxi, Meng & Shuli, Zhao & Xiaowei, Zhang, 2023. "Influence of aerodynamic pressure on dust removal by supersonic siphon atomization," Energy, Elsevier, vol. 282(C).
    10. Rongshan Nie & Zhen Wang, 2024. "Research on the Dynamic Model of Emergency Rescue Resource-Allocation Systems for Mine-Fire Accidents, Taking Liquid CO 2 Transportation as an Example," Sustainability, MDPI, vol. 16(6), pages 1-20, March.
    11. Jakub Janus & Piotr Ostrogórski, 2022. "Underground Mine Tunnel Modelling Using Laser Scan Data in Relation to Manual Geometry Measurements," Energies, MDPI, vol. 15(7), pages 1-15, March.
    12. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    13. Xi Chen & Hao Zhang & Shaocheng Ge & Cunbao Deng & Chaonan Fan & Guoliang Ma & Weichao Li, 2022. "Research on the Dust Diffusion and Pollution Behaviour of Dynamic Tunneling in Header Excavators Based on Dynamic Mesh Technology and Field Measurement," Energies, MDPI, vol. 15(23), pages 1-28, November.
    14. Dawid Szurgacz & Jarosław Brodny, 2019. "Tests of Geometry of the Powered Roof Support Section," Energies, MDPI, vol. 12(20), pages 1-19, October.
    15. Magdalena Tutak, 2019. "The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    16. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    17. Lin Li & Tiantian Liu & Zhiqiang Li & Xiangjun Chen & Lin Wang & Shuailong Feng, 2023. "Different Prevention Effects of Ventilation Dilution on Methane Accumulation at High Temperature Zone in Coal Mine Goafs," Energies, MDPI, vol. 16(7), pages 1-18, March.
    18. Dawid Szurgacz & Sergey Zhironkin & Michal Cehlár & Stefan Vöth & Sam Spearing & Ma Liqiang, 2021. "A Step-by-Step Procedure for Tests and Assessment of the Automatic Operation of a Powered Roof Support," Energies, MDPI, vol. 14(3), pages 1-16, January.
    19. Florencio Fernández-Alaiz & Ana Maria Castañón & Fernando Gómez-Fernández & Antonio Bernardo-Sánchez & Marc Bascompta, 2020. "Determination and Fire Analysis of Gob Characteristics Using CFD," Energies, MDPI, vol. 13(20), pages 1-11, October.
    20. Wei Shao & Shuo Wang & Wenpu Wang & Kun Shao & Qi Xiao & Zheng Cui, 2023. "Experiment and Simulation on a Refrigeration Ventilation System for Deep Metal Mines," Sustainability, MDPI, vol. 15(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8405-:d:968788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.