IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4638-d847241.html
   My bibliography  Save this article

Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load

Author

Listed:
  • Qingliang Zeng

    (College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    College of Information Science and Engineering, Shandong Normal University, Jinan 250358, China)

  • Zhaoji Li

    (College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Lirong Wan

    (College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Dejian Ma

    (College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Jiantao Wang

    (College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

In the process of coal mining, the canopy and column play an important role in the safety support of hydraulic support. However, due to the complex and changeable coal seam conditions, the hydraulic support is significantly affected by the impact load. This paper aims to reveal the dynamic characteristics of canopy and column under impact load. Firstly, the dynamic model of hydraulic support is established, and the impact response of each hinge point of the canopy is analyzed. Secondly, based on the fluid–structure interaction (FSI) theory, the two-way FSI model of the column is established, and the structural change of the column and the flow field characteristics in the cylinder under the impact load are analyzed. The results show that the front column hinge is more prone to impact failure under impact load. The impact load has a significant impact on the two-level cylinder, the pressure in the cylinder increases, and an eddy current occurs on both sides of the bottom of the cylinder. The research results can provide references for the structural optimization of the hydraulic support with anti-impact load and the strength design of the column.

Suggested Citation

  • Qingliang Zeng & Zhaoji Li & Lirong Wan & Dejian Ma & Jiantao Wang, 2022. "Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load," Energies, MDPI, vol. 15(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4638-:d:847241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    2. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    3. Dawid Szurgacz & Jarosław Brodny, 2019. "Analysis of the Influence of Dynamic Load on the Work Parameters of a Powered Roof Support’s Hydraulic Leg," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    4. Janina Świątek & Tomasz Janoszek & Tomasz Cichy & Kazimierz Stoiński, 2021. "Computational Fluid Dynamics Simulations for Investigation of the Damage Causes in Safety Elements of Powered Roof Supports—A Case Study," Energies, MDPI, vol. 14(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingliang Zeng & Chen Ma & Zhaosheng Meng & Jiantao Wang & Penghui Xu & Xiaowan Lei, 2023. "Dynamic Response Difference of Hydraulic Support under Mechanical-Hydraulic Co-Simulation: Induced by Different Roof Rotation Position and Hysteresis Effect of Relief Valve," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lirong Wan & Xuehui Yu & Dejian Ma & Zhaosheng Meng & Qingliang Zeng & Guoqing Qi, 2022. "Dynamic Response Analysis of a Novel Anti-Impact Pressure Balance Jack," Energies, MDPI, vol. 15(14), pages 1-15, July.
    2. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.
    3. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    4. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    5. Qingxiang Huang & Yanpeng He, 2019. "Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock," Energies, MDPI, vol. 12(21), pages 1-22, November.
    6. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    7. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    8. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    9. Adam Wróblewski & Pavlo Krot & Radosław Zimroz & Timo Mayer & Jyri Peltola, 2023. "Review of Linear Electric Motor Hammers—An Energy-Saving and Eco-Friendly Solution in Industry," Energies, MDPI, vol. 16(2), pages 1-28, January.
    10. Sergey Zhironkin & Alexey Selyukov & Magerram Gasanov, 2020. "Parameters of Transition from Deepening Longitudinal to Continuous Lateral Surface Mining Methods to Decrease Environmental Damage in Coal Clusters," Energies, MDPI, vol. 13(13), pages 1-22, June.
    11. Krzysztof Czajka & Witold Kawalec & Robert Król & Izabela Sówka, 2022. "Modelling and Calculation of Raw Material Industry," Energies, MDPI, vol. 15(14), pages 1-6, July.
    12. Dejian Ma & Xin Zhang & Lirong Wan & Qingliang Zeng & Hongen Ge, 2020. "Dynamic Analysis of Shearer Traction Unit Considering the Longitudinal Swing," Energies, MDPI, vol. 13(20), pages 1-15, October.
    13. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    14. Malte Scharf & Ludger Heide & Alexander Grahle & Anne Magdalene Syré & Dietmar Göhlich, 2020. "Environmental Impact of Subsidy Concepts for Stimulating Car Sales in Germany," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    15. Sylwester Rajwa & Tomasz Janoszek & Janina Świątek & Andrzej Walentek & Dominik Bałaga, 2022. "Numerical Simulation of the Impact of Unmined Longwall Panel on the Working Stability of a Longwall Using UDEC 2D—A Case Study," Energies, MDPI, vol. 15(5), pages 1-19, February.
    16. Feng Cui & Yanbin Yang & Xingping Lai & Chong Jia & Pengfei Shan, 2019. "Experimental Study on the Effect of Advancing Speed and Stoping Time on the Energy Release of Overburden in an Upward Mining Coal Working Face with a Hard Roof," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    17. Jia Liu & Fengshan Ma & Jie Guo & Guang Li & Yewei Song & Yang Wan, 2022. "A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    18. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    19. Magdalena Tutak, 2019. "The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    20. Yanpeng He & Qingxiang Huang, 2023. "Simulation Study on Spatial Form of the Suspended Roof Structure of Working Face in Shallow Coal Seam," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4638-:d:847241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.