IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3305-d377380.html
   My bibliography  Save this article

Parameters of Transition from Deepening Longitudinal to Continuous Lateral Surface Mining Methods to Decrease Environmental Damage in Coal Clusters

Author

Listed:
  • Sergey Zhironkin

    (Department of Trade and Marketing, Siberian Federal University, 79 Svobodny av., 660041 Krasnoyarsk, Russia
    Department of Open Pit Mining, T.F. Gorbachev Kuzbass State Technical University, 28 Vesennya st., 650000 Kemerovo, Russia
    School of Core Engineering Education, National Research Tomsk Polytechnic University, 30 Lenina st., 634050 Tomsk, Russia)

  • Alexey Selyukov

    (Department of Open Pit Mining, T.F. Gorbachev Kuzbass State Technical University, 28 Vesennya st., 650000 Kemerovo, Russia)

  • Magerram Gasanov

    (School of Core Engineering Education, National Research Tomsk Polytechnic University, 30 Lenina st., 634050 Tomsk, Russia)

Abstract

The present paper deals with an original way to reduce the environmental damage caused to land and air resources by surface coal mines with external dumping, due to the transition to internal dumping with filling the worked out space of the surface mine with overburden. The basic principle of the proposed idea is the transition from the deepening longitudinal mining method for the development of inclined and steep coal seam strata to lateral ones. This article substantiates the choice of technology for a block-and-layer continuous lateral mining method, including the construction of a first-stage pit, the use of a combined transport and direct dumping technology for moving overburden to an internal dump when mining blocks using draglines. The advantage of the presented technology, along with filling the internal capacity of the surface mine field with overburden, is the possibility of leveling the relief within the boundaries of the pit allotment and the implementation of reclamation as the mining front moves forward, without waiting for the dump to be completely filled in the boundary contours. Attention is also paid to the economic benefits of block-layer technology and the continuous lateral mining method, in the transition to which the overburden transporting costs can be significantly reduced, while the limitations of the proposed method’s implementation concern specific coal deposits that make up a small part of the fields being developed today by surface mining.

Suggested Citation

  • Sergey Zhironkin & Alexey Selyukov & Magerram Gasanov, 2020. "Parameters of Transition from Deepening Longitudinal to Continuous Lateral Surface Mining Methods to Decrease Environmental Damage in Coal Clusters," Energies, MDPI, vol. 13(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3305-:d:377380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serkan Saydam, 2012. "Surface Coal Mining Methods in Australia," Chapters, in: Turgay Onargan (ed.), Mining Methods, IntechOpen.
    2. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    3. Jarosław Brodny & Magdalena Tutak, 2019. "Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition Systems: A Case Study," Energies, MDPI, vol. 12(13), pages 1-15, June.
    4. Changsheng Ji, 2012. "Surface Coal Mining Methods in China," Chapters, in: Turgay Onargan (ed.), Mining Methods, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    2. Paweł Boroń & Joanna Maria Dulińska & Dorota Jasińska, 2020. "Impact of High Energy Mining-Induced Seismic Shocks from Different Mining Activity Regions on a Multiple-Support Road Viaduct," Energies, MDPI, vol. 13(16), pages 1-25, August.
    3. Sergey Zhironkin & Michal Cehlár, 2021. "Coal Mining Sustainable Development: Economics and Technological Outlook," Energies, MDPI, vol. 14(16), pages 1-8, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szurgacz & Sergey Zhironkin & Michal Cehlár & Stefan Vöth & Sam Spearing & Ma Liqiang, 2021. "A Step-by-Step Procedure for Tests and Assessment of the Automatic Operation of a Powered Roof Support," Energies, MDPI, vol. 14(3), pages 1-16, January.
    2. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    3. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong, 2023. "Study on the thermal behavior of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 281(C).
    4. Zhiguo LU & Wenjun JU & Fuqiang GAO & Youliang FENG & Zhuoyue SUN & Hao WANG & Kang YI, 2019. "A New Bursting Liability Evaluation Index for Coal –The Effective Elastic Strain Energy Release Rate," Energies, MDPI, vol. 12(19), pages 1-15, September.
    5. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    6. Qingliang Zeng & Zhaoji Li & Lirong Wan & Dejian Ma & Jiantao Wang, 2022. "Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load," Energies, MDPI, vol. 15(13), pages 1-20, June.
    7. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    8. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    9. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    10. Janina Świątek & Tomasz Janoszek & Tomasz Cichy & Kazimierz Stoiński, 2021. "Computational Fluid Dynamics Simulations for Investigation of the Damage Causes in Safety Elements of Powered Roof Supports—A Case Study," Energies, MDPI, vol. 14(4), pages 1-20, February.
    11. Arabi, Mahsa & Gholamian, Mohammad Reza, 2023. "Resilient closed-loop supply chain network design considering quality uncertainty: A case study of stone quarries," Resources Policy, Elsevier, vol. 80(C).
    12. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.
    13. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    14. Magdalena Tutak & Jarosław Brodny & Dawid Szurgacz & Leszek Sobik & Sergey Zhironkin, 2020. "The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study," Energies, MDPI, vol. 13(18), pages 1-31, September.
    15. Cun Zhang & Xiaojie Wang & Shangxin Fang & Xutao Shi, 2022. "Construction and Application of VR-AR Teaching System in Coal-Based Energy Education," Sustainability, MDPI, vol. 14(23), pages 1-14, December.
    16. Dejian Ma & Xin Zhang & Lirong Wan & Qingliang Zeng & Hongen Ge, 2020. "Dynamic Analysis of Shearer Traction Unit Considering the Longitudinal Swing," Energies, MDPI, vol. 13(20), pages 1-15, October.
    17. Railh Gugus Tresor Massonini Ngoma & Cety Gessica Abraham Mahanga Tsoni & Xiangrui Meng & Sumaiya Bashiru Danwana, 2023. "The Impact of the Mining Equipment, Technological Trends, and Natural Resource Demand on Climate Change in Congo," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    18. Jarosław Brodny & Magdalena Tutak, 2020. "The Use of Artificial Neural Networks to Analyze Greenhouse Gas and Air Pollutant Emissions from the Mining and Quarrying Sector in the European Union," Energies, MDPI, vol. 13(8), pages 1-31, April.
    19. Michele Mutchek & Gregory Cooney & Gavin Pickenpaugh & Joe Marriott & Timothy Skone, 2016. "Understanding the Contribution of Mining and Transportation to the Total Life Cycle Impacts of Coal Exported from the United States," Energies, MDPI, vol. 9(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3305-:d:377380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.