IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4045-d394693.html
   My bibliography  Save this article

Impact of High Energy Mining-Induced Seismic Shocks from Different Mining Activity Regions on a Multiple-Support Road Viaduct

Author

Listed:
  • Paweł Boroń

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland)

  • Joanna Maria Dulińska

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland)

  • Dorota Jasińska

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

In this paper, the dynamic responses of a large-scale multiple-support road viaduct to mining-induced seismic events registered in two regions of mining activity were compared. The regions differ in geological structure, which results in discrepancies in the dominant frequency content. Spatial variation of ground motion causing the kinematic excitation non-uniformity was accounted for in the dynamic analyses of this large-scale structure. Non-uniform mining-induced kinematic excitation models were proposed, with respect to the specificity of mining origin quakes. The dynamic performance of the viaduct was determined using three different methods of calculation: the time history analysis, the response spectrum analysis, and the multiple support response spectrum analysis. Both the uniform and non-uniform kinematic excitation models were adopted for the dynamic performance assessment. The research revealed that the dynamic response of some members of the structure, determined using the non-uniform excitation model, was significantly greater than that obtained for the uniform one. Hence, in the dynamic analysis of multiple-support structures under mining-induced events, the effect of spatial variation of ground motion should be considered. The study pointed out that the commonly used response spectrum analysis may lead to the underestimation of the dynamic response of large-scale multiple-support structures. Instead, the multiple support response spectrum method, which takes into account the non-uniformity of ground motion, is recommended as a conservative approximation. This method provides a safe upper estimation of the full-dynamic analysis results of large-scale structures under mining-induced tremors. Finally, the research indicated that the dynamic performance of a structure strongly depends on the frequency range attributed to a specific mining region. The dynamic performance of identical engineering structures under tremors of similar maximal amplitudes may differ significantly due to discrepancies in frequency contents of shocks occurring in various mining regions.

Suggested Citation

  • Paweł Boroń & Joanna Maria Dulińska & Dorota Jasińska, 2020. "Impact of High Energy Mining-Induced Seismic Shocks from Different Mining Activity Regions on a Multiple-Support Road Viaduct," Energies, MDPI, vol. 13(16), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4045-:d:394693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergey Zhironkin & Alexey Selyukov & Magerram Gasanov, 2020. "Parameters of Transition from Deepening Longitudinal to Continuous Lateral Surface Mining Methods to Decrease Environmental Damage in Coal Clusters," Energies, MDPI, vol. 13(13), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Bańka & Adam Lurka & Łukasz Szuła, 2023. "Ground Motion Prediction of High-Energy Mining Seismic Events: A Bootstrap Approach," Energies, MDPI, vol. 16(10), pages 1-15, May.
    2. Sergey Zhironkin & Michal Cehlár, 2021. "Coal Mining Sustainable Development: Economics and Technological Outlook," Energies, MDPI, vol. 14(16), pages 1-8, August.
    3. Paweł Boroń & Joanna Maria Dulińska & Dorota Jasińska, 2021. "Two-Step Finite Element Model Tuning Strategy of a Bridge Subjected to Mining-Triggered Tremors of Various Intensities Based on Experimental Modal Identification," Energies, MDPI, vol. 14(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Zhironkin & Michal Cehlár, 2021. "Coal Mining Sustainable Development: Economics and Technological Outlook," Energies, MDPI, vol. 14(16), pages 1-8, August.
    2. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4045-:d:394693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.