IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p14025-d706137.html
   My bibliography  Save this article

Coupling Remote Sensing and Hydrological Model for Evaluating the Impacts of Climate Change on Streamflow in Data-Scarce Environment

Author

Listed:
  • Fazlullah Akhtar

    (Center for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany)

  • Usman Khalid Awan

    (International Water Management Institute (IWMI), Lahore 53700, Pakistan)

  • Christian Borgemeister

    (Center for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany)

  • Bernhard Tischbein

    (Center for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany)

Abstract

The Kabul River Basin (KRB) in Afghanistan is densely inhabited and heterogenic. The basin’s water resources are limited, and climate change is anticipated to worsen this problem. Unfortunately, there is a scarcity of data to measure the impacts of climate change on the KRB’s current water resources. The objective of the current study is to introduce a methodology that couples remote sensing and the Soil and Water Assessment Tool (SWAT) for simulating the impact of climate change on the existing water resources of the KRB. Most of the biophysical parameters required for the SWAT model were derived from remote sensing-based algorithms. The SUFI-2 technique was used for calibrating and validating the SWAT model with streamflow data. The stream-gauge stations for monitoring the streamflow are not only sparse, but the streamflow data are also scarce and limited. Therefore, we selected only the stations that are properly being monitored. During the calibration period, the coefficient of determination (R 2 ) and Nash–Sutcliffe Efficiency (NSE) were 0.75–0.86 and 0.62–0.81, respectively. During the validation period (2011–2013), the NSE and R 2 values were 0.52–0.73 and 0.65–0.86, respectively. The validated SWAT model was then used to evaluate the potential impacts of climate change on streamflow. Regional Climate Model (RegCM4-4) was used to extract the data for the climate change scenarios (RCP 4.5 and 8.5) from the CORDEX domain. The results show that streamflow in most tributaries of the KRB would decrease by a maximum of 5% and 8.5% under the RCP 4.5 and 8.5 scenarios, respectively. However, streamflow for the Nawabad tributary would increase by 2.4% and 3.3% under the RCP 4.5 and 8.5 scenarios, respectively. To mitigate the impact of climate change on reduced/increased surface water availability, the SWAT model, when combined with remote sensing data, can be an effective tool to support the sustainable management and strategic planning of water resources. Furthermore, the methodological approach used in this study can be applied in any of the data-scarce regions around the world.

Suggested Citation

  • Fazlullah Akhtar & Usman Khalid Awan & Christian Borgemeister & Bernhard Tischbein, 2021. "Coupling Remote Sensing and Hydrological Model for Evaluating the Impacts of Climate Change on Streamflow in Data-Scarce Environment," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14025-:d:706137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/14025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/14025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yadu Pokhrel & Farshid Felfelani & Yusuke Satoh & Julien Boulange & Peter Burek & Anne Gädeke & Dieter Gerten & Simon N. Gosling & Manolis Grillakis & Lukas Gudmundsson & Naota Hanasaki & Hyungjun Kim, 2021. "Global terrestrial water storage and drought severity under climate change," Nature Climate Change, Nature, vol. 11(3), pages 226-233, March.
    2. Zekâi Şen, 2021. "Reservoirs for Water Supply Under Climate Change Impact—A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3827-3843, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    2. Peyman Arjomandi A. & Masoud Yazdanpanah & Akbar Shirzad & Nadejda Komendantova & Erfan Kameli & Mahdi Hosseinzadeh & Erfan Razavi, 2023. "Institutional Trust and Cognitive Motivation toward Water Conservation in the Face of an Environmental Disaster," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    3. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    4. David N. Sattler & James M. Graham & Albert Whippy & Richard Atienza & James Johnson, 2023. "Developing a Climate Change Risk Perception Model in the Philippines and Fiji: Posttraumatic Growth Plays Central Role," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    5. Amjad Khan & Yoonkyung Park & Jongpyo Park & Reeho Kim, 2022. "Assessment of Rainwater Harvesting Facilities Tank Size Based on a Daily Water Balance Model: The Case of Korea," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    6. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    7. Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Yongbin Zhang & Tanglei Song & Jihao Fan & Weidong Man & Mingyue Liu & Yongqiang Zhao & Hao Zheng & Yahui Liu & Chunyu Li & Jingru Song & Xiaowu Yang & Junmin Du, 2022. "Land Use and Climate Change Altered the Ecological Quality in the Luanhe River Basin," IJERPH, MDPI, vol. 19(13), pages 1-22, June.
    9. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    10. Eleonora Cataldo & Maddalena Fucile & Giovan Battista Mattii, 2022. "Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
    11. Silvia Di Francesco & Stefano Casadei & Ilaria Di Mella & Francesca Giannone, 2022. "The Role of Small Reservoirs in a Water Scarcity Scenario: a Computational Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 875-889, February.
    12. Monna Lysa Teixeira Santana & Vanêssa Lopes de Faria & Samara Martins Barbosa & Milson Evaldo Serafim & Alexandre Uezu & Bruno Montoani Silva & Junior Cesar Avanzi, 2023. "Impacts of Land Use Changes on Soil Functions and Water Security: Insights from a Three-Year-Long Study in the Cantareira System, Southeast of Brazil," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    13. de Castro-Pardo, Mónica & Cabello, José Manuel & Martín, José María & Ruiz, Francisco, 2023. "A multi reference point based index to assess and monitor European water policies from a sustainability approach," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Chenchen Ding & Yong Xia & Yang Su & Feng Li & Changjiang Xiong & Jingwen Xu, 2022. "Study on the Impact of Climate Change on China’s Import Trade of Major Agricultural Products and Adaptation Strategies," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
    15. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Ameneh Mianabadi & Seyed Majid Hasheminia & Kamran Davary & Hashem Derakhshan & Markus Hrachowitz, 2021. "Estimating the Aquifer’s Renewable Water to Mitigate the Challenges of Upcoming Megadrought Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4927-4942, November.
    17. Cailin Wang & Enliang Guo & Yongfang Wang & Buren Jirigala & Yao Kang & Ye Zhang, 2023. "Spatiotemporal variations in drought and waterlogging and their effects on maize yields at different growth stages in Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 155-180, August.
    18. Haimei Duan & Chunxue Shang & Kun Yang & Yi Luo, 2022. "Dynamic Response of Surface Water Temperature in Urban Lakes under Different Climate Scenarios—A Case Study in Dianchi Lake, China," IJERPH, MDPI, vol. 19(19), pages 1-11, September.
    19. Akhtar, F. & Awan, Usman Khalid & Borgemeister, C. & Tischbein, B., 2021. "Coupling remote sensing and hydrological model for evaluating the impacts of climate change on streamflow in data-scarce environment," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(24):14.
    20. Marcelle Nardelli Baptista & Ricardo Valcarcel & Marcela Cohen Martelotte, 2022. "Floodplains and Connectivity Zones: Enhancing the Provision of Ecosystem Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 341-352, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14025-:d:706137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.