IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13577-d697898.html
   My bibliography  Save this article

Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen

Author

Listed:
  • Robert Wojtowicz

    (Oil and Gas Institute-National Research Institute, ul. Lubicz 25a, 31-503 Kraków, Poland)

  • Jacek Jaworski

    (Oil and Gas Institute-National Research Institute, ul. Lubicz 25a, 31-503 Kraków, Poland)

Abstract

This article presents the results of the testing of the addition of a hydrogen-to-nitrogen-rich natural gas of the Lw group and its influence on the operation of selected gas-fired domestic appliances. The tests were performed on appliances used for the preparation of meals and hot water production for hygienic and heating purposes. The characteristics of the tested gas appliances are also presented. The burners and their controllers, with which the tested appliances were equipped, were adapted for the combustion of Lw natural gas. The tested appliances reflected the most popular designs for domestic gas appliances in their group, used both in Poland and in other European countries. The tested appliances were supplied with nitrogen-rich natural gas of the Lw group, and a mixture of this gas with hydrogen at 13.2% content. The article presents the approximate percentage compositions of the gases used during the tests and their energy parameters. The research was focused on checking the following operating parameters and the safety of the tested appliances: the rated heat input, thermal efficiency, combustion quality, ignition, flame stability, and transfer. The article contains an analysis of the test results, referring, in detail, to the issue of decreasing the heat input of the appliances by lowering the energy parameters of the nitrogen-rich natural gas of the Lw group mixture with a hydrogen addition, and how it influenced the thermal efficiency achieved by the appliances. The conclusions contain an explanation regarding, among other things, how the design of an appliance influences the thermal efficiency achieved by it in relation to the heat input decrease. In the conclusions, on the basis of the research results, answers have been provided to the following questions: (1) Whether the hydrogen addition to the nitrogen-rich natural gas of the Lw group will influence the safe and proper operation of domestic gas appliances; (2) What hydrogen percentage can be added to the nitrogen-rich natural gas of the Lw group in order for the appliances adapted for combusting it to operate safely and effectively, without the need for modifying them?

Suggested Citation

  • Robert Wojtowicz & Jacek Jaworski, 2021. "Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13577-:d:697898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo Basso, Gianluigi & Nastasi, Benedetto & Astiaso Garcia, Davide & Cumo, Fabrizio, 2017. "How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers," Energy, Elsevier, vol. 123(C), pages 615-636.
    2. de Vries, Harmen & Levinsky, Howard B., 2020. "Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development," Applied Energy, Elsevier, vol. 259(C).
    3. Jacek Jaworski & Adrian Dudek, 2020. "Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters," Energies, MDPI, vol. 13(20), pages 1-23, October.
    4. Anna Huszal & Jacek Jaworski, 2020. "Studies of the Impact of Hydrogen on the Stability of Gaseous Mixtures of THT," Energies, MDPI, vol. 13(23), pages 1-19, December.
    5. Jacek Jaworski & Paweł Kułaga & Tomasz Blacharski, 2020. "Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters," Energies, MDPI, vol. 13(11), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    2. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    3. Jacek Jaworski & Paweł Kułaga & Giorgio Ficco & Marco Dell’Isola, 2021. "Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures," Energies, MDPI, vol. 14(22), pages 1-14, November.
    4. Anna Huszal & Jacek Jaworski, 2020. "Studies of the Impact of Hydrogen on the Stability of Gaseous Mixtures of THT," Energies, MDPI, vol. 13(23), pages 1-19, December.
    5. Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).
    6. Giorgio Ficco & Fausto Arpino & Marco Dell’Isola & Michele Grimaldi & Silvia Lisi, 2022. "Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy," Energies, MDPI, vol. 15(21), pages 1-10, October.
    7. Marco Dell’Isola & Giorgio Ficco & Linda Moretti & Jacek Jaworski & Paweł Kułaga & Ewa Kukulska–Zając, 2021. "Impact of Hydrogen Injection on Natural Gas Measurement," Energies, MDPI, vol. 14(24), pages 1-17, December.
    8. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    9. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    10. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    11. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
    12. de Santoli, Livio & Paiolo, Romano & Lo Basso, Gianluigi, 2020. "Energy-environmental experimental campaign on a commercial CHP fueled with H2NG blends and oxygen enriched air hailing from on-site electrolysis," Energy, Elsevier, vol. 195(C).
    13. Martin Robinius & Alexander Otto & Konstantinos Syranidis & David S. Ryberg & Philipp Heuser & Lara Welder & Thomas Grube & Peter Markewitz & Vanessa Tietze & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany," Energies, MDPI, vol. 10(7), pages 1-23, July.
    14. Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
    15. Meleddu, Marta & Pulina, Manuela, 2018. "Public spending on renewable energy in Italian regions," Renewable Energy, Elsevier, vol. 115(C), pages 1086-1098.
    16. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    17. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
    18. de Vries, Harmen & Levinsky, Howard B., 2020. "Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development," Applied Energy, Elsevier, vol. 259(C).
    19. Jacek Jaworski & Adrian Dudek, 2020. "Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters," Energies, MDPI, vol. 13(20), pages 1-23, October.
    20. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M., 2018. "Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents," Applied Energy, Elsevier, vol. 224(C), pages 717-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13577-:d:697898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.