IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11740-d663713.html
   My bibliography  Save this article

Demand Side Management Techniques for Home Energy Management Systems for Smart Cities

Author

Listed:
  • Muhammad Majid Hussain

    (Department of Electrical and Electronic Engineering, University of South Wales, Pontypirdd CF37 1DL, UK)

  • Rizwan Akram

    (Department of Electrical Engineering, College of Engineering, Qassim University, P.O. Box 6677, Qassim 51452, Saudi Arabia)

  • Zulfiqar Ali Memon

    (Department of Electrical and Computer Engineering, Ajman University, Ajman P.O. Box 346, United Arab Emirates)

  • Mian Hammad Nazir

    (Department of Electrical and Electronic Engineering, University of South Wales, Pontypirdd CF37 1DL, UK)

  • Waqas Javed

    (School of Computing, Engineering and Built Environment Glasgow Caledonian University, Glasgow G4 OBA, UK)

  • Muhammad Siddique

    (Department of Electrical Engineering & Computer Science, NFC Institute of Engineering and Technology, Multan 66000, Pakistan)

Abstract

In this paper, three distinct distributed energy resources (DERs) modules have been built based on demand side management (DSM), and their use in power management of dwelling in future smart cities has been investigated. The investigated modules for DERs system are: incorporation of load shedding, reduction of grid penetration with renewable energy systems (RES), and implementation of home energy management systems (HEMS). The suggested approaches offer new potential for improving demand side efficiency and helping to minimize energy demand during peak hours. The main aim of this work was to investigate and explore how a specific DSM strategy for DER may assist in reducing energy usage while increasing efficiency by utilizing new developing technology. The Electrical Power System Analysis (ETAP) software was used to model and assess the integration of distributed generation, such as RES, in order to use local power storage. An energy management system has been used to evaluate a PV system with an individual household load, which proved beneficial when evaluating its potential to generate about 20–25% of the total domestic load. In this study, we have investigated how smart home appliances’ energy consumption may be minimized and explained why a management system is required to optimally utilize a PV system. Furthermore, the effect of integration of wind turbines to power networks to reduce the load on the main power grid has also been studied. The study revealed that smart grids improve energy efficiency, security, and management whilst creating environmental awareness for consumers with regards to power usage.

Suggested Citation

  • Muhammad Majid Hussain & Rizwan Akram & Zulfiqar Ali Memon & Mian Hammad Nazir & Waqas Javed & Muhammad Siddique, 2021. "Demand Side Management Techniques for Home Energy Management Systems for Smart Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11740-:d:663713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Soares, J. & Silva, M. & Sousa, T. & Vale, Z. & Morais, H., 2012. "Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization," Energy, Elsevier, vol. 42(1), pages 466-476.
    3. Mohamadou Nassourou & Joaquim Blesa & Vicenç Puig, 2020. "Robust Economic Model Predictive Control Based on a Zonotope and Local Feedback Controller for Energy Dispatch in Smart-Grids Considering Demand Uncertainty," Energies, MDPI, vol. 13(3), pages 1-19, February.
    4. Jaeyeong Yoo & Byungsung Park & Kyungsung An & Essam A. Al-Ammar & Yasin Khan & Kyeon Hur & Jong Hyun Kim, 2012. "Look-Ahead Energy Management of a Grid-Connected Residential PV System with Energy Storage under Time-Based Rate Programs," Energies, MDPI, vol. 5(4), pages 1-19, April.
    5. Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.
    6. Ali Elrayyah & Sertac Bayhan, 2019. "Multi-Channel-Based Microgrid for Reliable Operation and Load Sharing," Energies, MDPI, vol. 12(11), pages 1-13, May.
    7. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    8. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    9. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2016. "Energy management and planning in smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 273-287.
    10. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Husnain Ashfaq & Zulfiqar Ali Memon & Muhammad Akmal Chaudhary & Muhammad Talha & Jeyraj Selvaraj & Nasrudin Abd Rahim & Muhammad Majid Hussain, 2022. "Robust Dynamic Control of Constant-Current-Source-Based Dual-Active-Bridge DC/DC Converter Used for Off-Board EV Charging," Energies, MDPI, vol. 15(23), pages 1-33, November.
    2. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    2. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    3. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Zheng, Zhuang & Sun, Zhankun & Pan, Jia & Luo, Xiaowei, 2021. "An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems," Applied Energy, Elsevier, vol. 298(C).
    5. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    6. Zafar Iqbal & Nadeem Javaid & Saleem Iqbal & Sheraz Aslam & Zahoor Ali Khan & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2018. "A Domestic Microgrid with Optimized Home Energy Management System," Energies, MDPI, vol. 11(4), pages 1-39, April.
    7. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    8. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    9. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    11. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    12. Abdelfettah Kerboua & Fouad Boukli-Hacene & Khaldoon A Mourad, 2020. "Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 71-80.
    13. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2017. "Electricity forecasting on the individual household level enhanced based on activity patterns," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-26, April.
    14. Abubakar, I. & Khalid, S.N. & Mustafa, M.W. & Shareef, Hussain & Mustapha, M., 2017. "Application of load monitoring in appliances’ energy management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 235-245.
    15. Joaquín Garrido-Zafra & Antonio Moreno-Munoz & Aurora Gil-de-Castro & Emilio J. Palacios-Garcia & Carlos D. Moreno-Moreno & Tomás Morales-Leal, 2019. "A Novel Direct Load Control Testbed for Smart Appliances," Energies, MDPI, vol. 12(17), pages 1-16, August.
    16. Al Essa, Mohammed Jasim M., 2019. "Home energy management of thermostatically controlled loads and photovoltaic-battery systems," Energy, Elsevier, vol. 176(C), pages 742-752.
    17. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    18. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    19. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Schieweck, Alexandra & Uhde, Erik & Salthammer, Tunga & Salthammer, Lea C. & Morawska, Lidia & Mazaheri, Mandana & Kumar, Prashant, 2018. "Smart homes and the control of indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 705-718.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11740-:d:663713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.