IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11682-d662314.html
   My bibliography  Save this article

Exergy-Based Life Cycle Assessment of Buildings: Case Studies

Author

Listed:
  • Martin Nwodo

    (Department of Construction Management, College of Design, Construction and Planning, University of Florida, Gainesville, FL 32611, USA)

  • Chimay J. Anumba

    (Department of Construction Management, College of Design, Construction and Planning, University of Florida, Gainesville, FL 32611, USA)

Abstract

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.

Suggested Citation

  • Martin Nwodo & Chimay J. Anumba, 2021. "Exergy-Based Life Cycle Assessment of Buildings: Case Studies," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11682-:d:662314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin N. Nwodo & Chimay J. Anumba, 2020. "Exergetic Life Cycle Assessment: A Review," Energies, MDPI, vol. 13(11), pages 1-19, May.
    2. Daniele Fiaschi & Giampaolo Manfrida & Barbara Mendecka & Lorenzo Tosti & Maria Laura Parisi, 2021. "A Comparison of Different Approaches for Assessing Energy Outputs of Combined Heat and Power Geothermal Plants," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    3. Elisabetta Palumbo & Bernardette Soust-Verdaguer & Carmen Llatas & Marzia Traverso, 2020. "How to Obtain Accurate Environmental Impacts at Early Design Stages in BIM When Using Environmental Product Declaration. A Method to Support Decision-Making," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    4. Tiziano Dalla Mora & Erika Bolzonello & Carmine Cavalliere & Fabio Peron, 2020. "Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends," Sustainability, MDPI, vol. 12(17), pages 1-33, September.
    5. Marc A. Rosen, 2009. "Energy Sustainability: A Pragmatic Approach and Illustrations," Sustainability, MDPI, vol. 1(1), pages 1-26, March.
    6. Rafael Horn & Sebastian Ebertshäuser & Roberta Di Bari & Olivia Jorgji & René Traunspurger & Petra von Both, 2020. "The BIM2LCA Approach: An Industry Foundation Classes (IFC)-Based Interface to Integrate Life Cycle Assessment in Integral Planning," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    7. Baoquan Cheng & Jingwei Li & Vivian W. Y. Tam & Ming Yang & Dong Chen, 2020. "A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-Scale Public Buildings: A Case Study," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    8. Kevin Allan & Adam R. Phillips, 2021. "Comparative Cradle-to-Grave Life Cycle Assessment of Low and Mid-Rise Mass Timber Buildings with Equivalent Structural Steel Alternatives," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    9. Sebastian Theißen & Jannick Höper & Jan Drzymalla & Reinhard Wimmer & Stanimira Markova & Anica Meins-Becker & Michaela Lambertz, 2020. "Using Open BIM and IFC to Enable a Comprehensive Consideration of Building Services within a Whole-Building LCA," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    10. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2009. "The Tenuous Use of Exergy as a Measure of Resource Value or Waste Impact," Sustainability, MDPI, vol. 1(4), pages 1-20, December.
    11. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Regitze Kjær Zimmermann & Simone Bruhn & Harpa Birgisdóttir, 2021. "BIM-Based Life Cycle Assessment of Buildings—An Investigation of Industry Practice and Needs," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    2. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    3. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    4. Martyna Maniak-Huesser & Lars G. F. Tellnes & Edwin Zea Escamilla, 2021. "Mind the Gap: A Policy Gap Analysis of Programmes Promoting Timber Construction in Nordic Countries," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    5. Annamaria Di Fabio & Marc A. Rosen, 2020. "An Exploratory Study of a New Psychological Instrument for Evaluating Sustainability: The Sustainable Development Goals Psychological Inventory," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    6. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    7. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    8. Christopher J. Koroneos & Evanthia A. Nanaki & George A. Xydis, 2012. "Sustainability Indicators for the Use of Resources—The Exergy Approach," Sustainability, MDPI, vol. 4(8), pages 1-12, August.
    9. Koray Altintas & Ozalp Vayvay & Sinan Apak & Emine Cobanoglu, 2020. "An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    10. Emanuele Leporelli & Giovanni Santi, 2019. "From Psychology of Sustainability to Sustainability of Urban Spaces: Promoting a Primary Prevention Approach for Well-Being in the Healthy City Designing. A Waterfront Case Study in Livorno," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    11. Sebastian Czernik & Marta Marcinek & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2020. "Environmental Footprint of Cementitious Adhesives—Components of ETICS," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    12. Hugé, Jean & Waas, Tom & Eggermont, Gilbert & Verbruggen, Aviel, 2011. "Impact assessment for a sustainable energy future'Reflections and practical experiences," Energy Policy, Elsevier, vol. 39(10), pages 6243-6253, October.
    13. Kai Xue & Md. Uzzal Hossain & Meng Liu & Mingjun Ma & Yizhi Zhang & Mengqiang Hu & XiaoYi Chen & Guangyu Cao, 2021. "BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    14. Zhang, Xiao Hong & Deng, ShiHuai & Jiang, WenJu & Zhang, YanZong & Peng, Hong & Li, Li & Yang, Gang & Li, YuanWei, 2010. "Emergy evaluation of the sustainability of two industrial systems based on wastes exchanges," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 182-195.
    15. Huihua Chen & Hujun Li & Yige Wang & Baoquan Cheng, 2020. "A Comprehensive Assessment Approach for Water-Soil Environmental Risk during Railway Construction in Ecological Fragile Region Based on AHP and MEA," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    16. Yali Chen & Dan Huang & Zhen Liu & Mohamed Osmani & Peter Demian, 2022. "Construction 4.0, Industry 4.0, and Building Information Modeling (BIM) for Sustainable Building Development within the Smart City," Sustainability, MDPI, vol. 14(16), pages 1-37, August.
    17. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    18. Sarah Feron & Raúl R. Cordero & Fernando Labbe, 2017. "Rural Electrification Efforts Based on Off-Grid Photovoltaic Systems in the Andean Region: Comparative Assessment of Their Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    19. Luka Adanič & Sara Guerra de Oliveira & Andrej Tibaut, 2021. "BIM and Mechanical Engineering—A Cross-Disciplinary Analysis," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    20. Jan Růžička & Jakub Veselka & Zdeněk Rudovský & Stanislav Vitásek & Petr Hájek, 2022. "BIM and Automation in Complex Building Assessment," Sustainability, MDPI, vol. 14(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11682-:d:662314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.