IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5644-d384152.html
   My bibliography  Save this article

Using Open BIM and IFC to Enable a Comprehensive Consideration of Building Services within a Whole-Building LCA

Author

Listed:
  • Sebastian Theißen

    (TH Köln (University of Applied Sciences), Institute of Building Services Engineering, Research Area Green Building, 50679 Cologne, Germany)

  • Jannick Höper

    (TH Köln (University of Applied Sciences), Institute of Building Services Engineering, Research Area Green Building, 50679 Cologne, Germany)

  • Jan Drzymalla

    (TH Köln (University of Applied Sciences), Institute of Building Services Engineering, Research Area Green Building, 50679 Cologne, Germany)

  • Reinhard Wimmer

    (TMM Group Gesamtplanungs GmbH, Building Information Modeling R&D and Change Management, 71034 Böblingen, Germany)

  • Stanimira Markova

    (RWTH Aachen University, Institute for Building Design and Realization, Research area Future Technologies for Comprehensive Building Sustainability, 52062 Aachen, Germany)

  • Anica Meins-Becker

    (University of Wuppertal, Interdisciplinary Centre III / Institute of Building Information Modeling, 42285 Wuppertal, Germany)

  • Michaela Lambertz

    (TH Köln (University of Applied Sciences), Institute of Building Services Engineering, Research Area Green Building, 50679 Cologne, Germany)

Abstract

Holistic views of all environmental impacts for buildings such as Life Cycle Assessments (LCAs) are rarely performed. Building services are mostly included in this assessment only in a simplified way, which means that their embodied impacts are usually underestimated. Open Building Information Modeling (BIM) and Industry Foundation Classes (IFC) provide for significantly more efficient and comprehensive LCA performance. This study investigated how building services can be included in an open BIM-integrated whole-building LCA for the first time, identified challenges and showed six solution approaches. Based on the definition of 222 exchange requirements and their mapping with IFC, an example BIM model was modeled before the linking of 7312 BIM objects of building services with LCA data that were analyzed in an LCA tool. The results show that 94.5% of the BIM objects could only be linked by applying one of the six solution approaches. The main problems were due to: (1) modeling by a lack of standardization of attributes of BIM objects; (2) difficult machine readability of the building services LCA datasets as well as a general lack of these; and (3) non-standardized properties of building services and LCA specific dataset information in the IFC data format.

Suggested Citation

  • Sebastian Theißen & Jannick Höper & Jan Drzymalla & Reinhard Wimmer & Stanimira Markova & Anica Meins-Becker & Michaela Lambertz, 2020. "Using Open BIM and IFC to Enable a Comprehensive Consideration of Building Services within a Whole-Building LCA," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5644-:d:384152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patricia Schneider-Marin & Hannes Harter & Konstantin Tkachuk & Werner Lang, 2020. "Uncertainty Analysis of Embedded Energy and Greenhouse Gas Emissions Using BIM in Early Design Stages," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    2. Christina Kiamili & Alexander Hollberg & Guillaume Habert, 2020. "Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    3. Anita Naneva & Marcella Bonanomi & Alexander Hollberg & Guillaume Habert & Daniel Hall, 2020. "Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    2. Martin Nwodo & Chimay J. Anumba, 2021. "Exergy-Based Life Cycle Assessment of Buildings: Case Studies," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    3. Regitze Kjær Zimmermann & Simone Bruhn & Harpa Birgisdóttir, 2021. "BIM-Based Life Cycle Assessment of Buildings—An Investigation of Industry Practice and Needs," Sustainability, MDPI, vol. 13(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Veselka & Marie Nehasilová & Karolína Dvořáková & Pavla Ryklová & Martin Volf & Jan Růžička & Antonín Lupíšek, 2020. "Recommendations for Developing a BIM for the Purpose of LCA in Green Building Certifications," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    2. Mustafa S. Al-Tekreeti & Salwa M. Beheiry & Vian Ahmed, 2022. "Commitment Indicators for Tracking Sustainable Design Decisions in Construction Projects," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    3. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    4. Eckard Helmers & Chia Chien Chang & Justin Dauwels, 2022. "Carbon Footprinting of Universities Worldwide Part II: First Quantification of Complete Embodied Impacts of Two Campuses in Germany and Singapore," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    5. José Pedro Carvalho & Fernanda Schmitd Villaschi & Luís Bragança, 2021. "Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    6. Kai Xue & Md. Uzzal Hossain & Meng Liu & Mingjun Ma & Yizhi Zhang & Mengqiang Hu & XiaoYi Chen & Guangyu Cao, 2021. "BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    7. Rabaka Sultana & Ahmad Rashedi & Taslima Khanam & Byongug Jeong & Homa Hosseinzadeh-Bandbafha & Majid Hussain, 2022. "Life Cycle Environmental Sustainability and Energy Assessment of Timber Wall Construction: A Comprehensive Overview," Sustainability, MDPI, vol. 14(7), pages 1-30, March.
    8. Roberto Giordano & Federica Gallina & Benedetta Quaglio, 2021. "Analysis and Assessment of the Building Life Cycle. Indicators and Tools for the Early Design Stage," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    9. Steffen Kiemel & Chantal Rietdorf & Maximilian Schutzbach & Robert Miehe, 2022. "How to Simplify Life Cycle Assessment for Industrial Applications—A Comprehensive Review," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    10. Tiziano Dalla Mora & Erika Bolzonello & Carmine Cavalliere & Fabio Peron, 2020. "Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends," Sustainability, MDPI, vol. 12(17), pages 1-33, September.
    11. Aminu Darda’u Rafindadi & Nasir Shafiq & Idris Othman, 2022. "A Conceptual Framework for BIM Process Flow to Mitigate the Causes of Fall-Related Accidents at the Design Stage," Sustainability, MDPI, vol. 14(20), pages 1-37, October.
    12. José Pedro Carvalho & Ismael Alecrim & Luís Bragança & Ricardo Mateus, 2020. "Integrating BIM-Based LCA and Building Sustainability Assessment," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    13. Maximilian Schildt & Johannes Linus Cuypers & Maxim Shamovich & Sonja Tamara Herzogenrath & Avichal Malhotra & Christoph Alban van Treeck & Jérôme Frisch, 2023. "On the Potential of District-Scale Life Cycle Assessments of Buildings," Energies, MDPI, vol. 16(15), pages 1-33, July.
    14. Patricia Schneider-Marin & Werner Lang, 2022. "A Temporal Perspective in Eco 2 Building Design," Sustainability, MDPI, vol. 14(10), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5644-:d:384152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.