IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10632-d642627.html
   My bibliography  Save this article

Numerical Assessment of an Innovative Design of an Evacuated Tube Solar Collector Incorporated with PCM Embedded Metal Foam/Plate Fins

Author

Listed:
  • Mohamed Houcine Dhaou

    (Department of Physics, College of Science, Qassim University, Buraidah 51411, Saudi Arabia
    Mechanical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia)

  • Sofiene Mellouli

    (Thermal and Energy Systems Studies Laboratory (LESTE), College of Engineering, University of Monastir, Monastir 5000, Tunisia)

  • Faisal Alresheedi

    (Department of Physics, College of Science, Qassim University, Buraidah 51411, Saudi Arabia)

  • Yassine El-Ghoul

    (Department of Chemistry, College of Science, Qassim University, Buraidah 51411, Saudi Arabia)

Abstract

The objective of this manuscript is to study the possibility of improving the thermal performance of an Evacuated Tube Solar Collector (ETSC) with the integration of a Phase Change Material (PCM) incorporated into metallic foam and fitted with plate fins. A 2D mathematical model has been proposed. Two types of metal foams (copper and nickel) were inserted. In addition, the effect of metal foam pore size of on heat transfer was studied. The results were acquired through numerical simulations of four different cases; namely, Case 1: pure PCM, Case 2: with metal foam, Case 3: with fins and Case 4: with metal foam and fins. The evaluation procedure involved observing the total change in Heat Transfer Fluid (HTF) temperature and melted PCM fraction during a single day. The results proved that the thermal performance of ETSC is improved considerably by inserting metal foam and fins simultaneously. The time required for the whole process is improved by almost 9% compared to the case of pure PCM, and 2% compared to the case of inserting only plate fins. Results revealed that the pore size of the metal foams slightly affects the dynamic process of heat storage/release in the ETSC/PCM system.

Suggested Citation

  • Mohamed Houcine Dhaou & Sofiene Mellouli & Faisal Alresheedi & Yassine El-Ghoul, 2021. "Numerical Assessment of an Innovative Design of an Evacuated Tube Solar Collector Incorporated with PCM Embedded Metal Foam/Plate Fins," Sustainability, MDPI, vol. 13(19), pages 1-11, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10632-:d:642627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    2. Lin Zheng & Wei Zhang & Lingzhi Xie & Wei Wang & Hao Tian & Mo Chen, 2019. "Experimental study on the thermal performance of solar air conditioning system with MEPCM cooling storage," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(1), pages 83-88.
    3. Xue Chen & Xiaolei Li & Xinlin Xia & Chuang Sun & Rongqiang Liu, 2019. "Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement," Energies, MDPI, vol. 12(17), pages 1-18, August.
    4. Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sana Said & Sofiene Mellouli & Talal Alqahtani & Salem Algarni & Ridha Ajjel & Kaouther Ghachem & Lioua Kolsi, 2023. "An Experimental Comparison of the Performance of Various Evacuated Tube Solar Collector Designs," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.
    3. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    4. Xu, Biwan & Ma, Hongyan & Lu, Zeyu & Li, Zongjin, 2015. "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites," Applied Energy, Elsevier, vol. 160(C), pages 358-367.
    5. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    6. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
    7. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    8. Ali M. Sefidan & Mehdi E. Sangari & Mathieu Sellier & Md. Imran Hossen Khan & Suvash C. Saha, 2022. "Modeling of Multi-Layer Phase Change Material in a Triplex Tube under Various Thermal Boundary Conditions," Energies, MDPI, vol. 15(9), pages 1-14, May.
    9. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    10. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    11. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    12. Berto, Arianna & Mattiuzzo, Nicolò & Zanetti, Emanuele & Meneghetti, Moreno & Del Col, Davide, 2024. "Measurements of solar energy absorption in a solar collector using carbon nanofluids," Renewable Energy, Elsevier, vol. 230(C).
    13. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Sharafeldin, Mahmoud Ahmed & Gróf, Gyula & Mahian, Omid, 2017. "Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids," Energy, Elsevier, vol. 141(C), pages 2436-2444.
    15. Abdelwaheb Trigui & Makki Abdelmouleh, 2023. "Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    16. Yiu Chan & Thomas Hoke & Kevin Meredith & Xi Chen, 2025. "Annual Simulation of Phase Change Materials for Enhanced Energy Efficiency and Thermal Performance of Buildings in Southern California," Energies, MDPI, vol. 18(4), pages 1-21, February.
    17. Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
    18. Lv, Laiquan & Wang, Jiankang & Ji, Mengting & Zhang, Yize & Huang, Shengyao & Cen, Kefa & Zhou, Hao, 2022. "Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms," Renewable Energy, Elsevier, vol. 195(C), pages 1238-1252.
    19. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    20. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10632-:d:642627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.