IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10546-d641291.html
   My bibliography  Save this article

Evaluating the Efficiency of Water Distribution Network Sectors Using the DEA-Weight Russell Directional Distance Model: The Case of the City of Valencia (Spain)

Author

Listed:
  • José Antonio Palomero-González

    (Grupo Global Omnium, Instituto Interuniversitario de Desarrollo Local, Universitat de València, 46022 València, Spain)

  • Vicent Almenar-Llongo

    (Department of Economics, Catholic University of Valencia, 46003 València, Spain)

  • Ramón Fuentes-Pascual

    (Departamento de Análisis Económico Aplicado, Universidad de Alicante, 03080 Alicante, Spain)

Abstract

In many cities, sectorization projects of the drinking water distribution network have been implemented. This study provides a methodology to evaluate the efficiency of the sectors of a water distribution network by applying a data envelopment analysis weighted Russell directional distance (DEA-WRDD) model. This non-radial DEA model gives the overall efficiency of each unit of analysis, as well as each input, output, and undesirable output considered in the evaluation. The variables used in the analysis provide a multidisciplinary view: economic factors (covering costs), water quality parameters, and technical aspects. The empirical analysis was performed for the sectors of the water distribution network of the city of Valencia (Spain) for the year 2016. In this particular case, the results showed that approximately half of the sectors were efficient. The efficiency values of each variable indicate that the main challenges (faced by the water distribution company) were the optimization of maintenance costs and the reduction of leaks, both of which have an impact on the quality of the distributed water. So, the purpose of this article is to highlight the usefulness of efficiency analysis to help the decision making of managers of sectorized water distribution networks so that they can optimize the management.

Suggested Citation

  • José Antonio Palomero-González & Vicent Almenar-Llongo & Ramón Fuentes-Pascual, 2021. "Evaluating the Efficiency of Water Distribution Network Sectors Using the DEA-Weight Russell Directional Distance Model: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10546-:d:641291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim Woodbury & Brian Dollery, 2004. "Efficiency Measurement in Australian Local Government: The Case of New South Wales Municipal Water Services," Review of Policy Research, Policy Studies Organization, vol. 21(5), pages 615-636, September.
    2. Fujii, Hidemichi & Managi, Shunsuke & Matousek, Roman, 2014. "Indian bank efficiency and productivity changes with undesirable outputs: A disaggregated approach," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 41-50.
    3. Aude Le Lannier & Simon Porcher, 2014. "Efficiency in the public and private French water utilities: prospects for benchmarking," Applied Economics, Taylor & Francis Journals, vol. 46(5), pages 556-572, February.
    4. Ping He & Tao Tao & Kunlun Xin & Shuping Li & Hexiang Yan, 2016. "Modelling Water Distribution Systems with Deficient Pressure: An Improved Iterative Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 593-606, January.
    5. Walter, Matthias & Cullmann, Astrid & von Hirschhausen, Christian & Wand, Robert & Zschille, Michael, 2009. "Quo vadis efficiency analysis of water distribution? A comparative literature review," Utilities Policy, Elsevier, vol. 17(3-4), pages 225-232, September.
    6. Molinos-Senante, María & Donoso, Guillermo & Sala-Garrido, Ramon, 2016. "Assessing the efficiency of Chilean water and sewerage companies accounting for uncertainty," Environmental Science & Policy, Elsevier, vol. 61(C), pages 116-123.
    7. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    8. M. A. Garcia-Valinas & M. A. Muniz, 2007. "Is DEA useful in the regulation of water utilities? A dynamic efficiency evaluation (a dynamic efficiency evaluation of water utilities)," Applied Economics, Taylor & Francis Journals, vol. 39(2), pages 245-252.
    9. Hidemichi Fujii & Jing Cao & Shunsuke Managi, 2015. "Decomposition of Productivity Considering Multi-environmental Pollutants in Chinese Industrial Sector," Review of Development Economics, Wiley Blackwell, vol. 19(1), pages 75-84, February.
    10. Alexandros Maziotis & María Molinos-Senante & Ramon Sala-Garrido, 2017. "Assesing the Impact of Quality of Service on the Productivity of Water Industry: a Malmquist-Luenberger Approach for England and Wales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2407-2427, June.
    11. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Managi, Shunsuke, 2014. "Non-Radial Directional Performance Measurement with Undesirable Outputs," MPRA Paper 57189, University Library of Munich, Germany.
    12. Cruz, Nuno Ferreira da & Carvalho, Pedro & Marques, Rui Cunha, 2013. "Disentangling the cost efficiency of jointly provided water and wastewater services," Utilities Policy, Elsevier, vol. 24(C), pages 70-77.
    13. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    14. Gongbing Bi & Pingchun Wang & Feng Yang & Liang Liang, 2014. "Energy and Environmental Efficiency of China’s Transportation Sector: A Multidirectional Analysis Approach," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-12, May.
    15. María Molinos-Senante & Ramon Sala-Garrido, 2017. "Decomposition of Productivity Growth of Water and Sewerage Companies: An Empirical Approach for Chile," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4309-4321, October.
    16. Cubbin, John & Tzanidakis, George, 1998. "Regression versus data envelopment analysis for efficiency measurement: an application to the England and Wales regulated water industry," Utilities Policy, Elsevier, vol. 7(2), pages 75-85, June.
    17. Cai, Yanpeng & Yue, Wencong & Xu, Linyu & Yang, Zhifeng & Rong, Qiangqiang, 2016. "Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 21-40.
    18. Ping He & Tao Tao & Kunlun Xin & Shuping Li & Hexiang Yan, 2016. "Modelling Water Distribution Systems with Deficient Pressure: An Improved Iterative Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 593-606, January.
    19. Romano, Giulia & Guerrini, Andrea, 2011. "Measuring and comparing the efficiency of water utility companies: A data envelopment analysis approach," Utilities Policy, Elsevier, vol. 19(3), pages 202-209.
    20. Abbott, Malcolm & Cohen, Bruce & Wang, Wei Chun, 2012. "The performance of the urban water and wastewater sectors in Australia," Utilities Policy, Elsevier, vol. 20(1), pages 52-63.
    21. Robi Kurniawan & Shunsuke Managi, 2017. "Sustainable Development and Performance Measurement: Global Productivity Decomposition," Sustainable Development, John Wiley & Sons, Ltd., vol. 25(6), pages 639-654, November.
    22. Marta Suárez-Varela & María los Ángeles García-Valiñas & Francisco González-Gómez & Andrés J Picazo-Tadeo, 2017. "Ownership and Performance in Water Services Revisited: Does Private Management Really Outperform Public?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2355-2373, June.
    23. María Molinos-Senante & Manuel Mocholi-Arce & Ramón Sala-Garrido, 2016. "Efficiency Assessment of Water and Sewerage Companies: a Disaggregated Approach Accounting for Service Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4311-4328, September.
    24. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    25. Kristof Witte & Rui Marques, 2011. "Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 213-226, June.
    26. Gidion, Dickson K. & Hong, Jin & Adams, Magdalene Z.A. & Khoveyni, Mohammad, 2019. "Network DEA models for assessing urban water utility efficiency," Utilities Policy, Elsevier, vol. 57(C), pages 48-58.
    27. Andrea Guerrini & Giulia Romano & Bettina Campedelli, 2013. "Economies of Scale, Scope, and Density in the Italian Water Sector: A Two-Stage Data Envelopment Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4559-4578, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaral, António L. & Martins, Rita & Dias, Luís C., 2023. "Operational drivers of water reuse efficiency in Portuguese wastewater service providers," Utilities Policy, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Antonio, Palomero-González & Vicent, Almenar-Llongo & Ramón, Fuentes-Pascual, 2022. "A composite indicator index as a proxy for measuring the quality of water supply as perceived by users for urban water services," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Danelon, André F. & Spolador, Humberto F.S. & Kumbhakar, Subal C., 2021. "Weather and population size effects on water and sewer treatment costs: Evidence from Brazil," Journal of Development Economics, Elsevier, vol. 153(C).
    3. María Molinos-Senante & Ramon Sala-Garrido, 2017. "Decomposition of Productivity Growth of Water and Sewerage Companies: An Empirical Approach for Chile," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4309-4321, October.
    4. Carvalho, Anne Emília Costa & Sampaio, Luciano Menezes Bezerra, 2015. "Paths to universalize water and sewage services in Brazil: The role of regulatory authorities in promoting efficient service," Utilities Policy, Elsevier, vol. 34(C), pages 1-10.
    5. Romano, Giulia & Guerrini, Andrea, 2011. "Measuring and comparing the efficiency of water utility companies: A data envelopment analysis approach," Utilities Policy, Elsevier, vol. 19(3), pages 202-209.
    6. María Molinos-Senante & Manuel Mocholi-Arce & Ramón Sala-Garrido, 2016. "Efficiency Assessment of Water and Sewerage Companies: a Disaggregated Approach Accounting for Service Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4311-4328, September.
    7. Alexandr Akimov & Paul Simshauser, 2018. "Performance measurement in Australian water utilities: Current state and future directions," Discussion Papers in Finance finance:201802, Griffith University, Department of Accounting, Finance and Economics.
    8. A. Guerrini & G. Romano & L. Carosi & F. Mancuso, 2017. "Cost Savings in Wastewater Treatment Processes: the Role of Environmental and Operational Drivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2465-2478, June.
    9. Huijuan Cao & Hidemichi Fujii & Shunsuke Managi, 2015. "A productivity analysis considering environmental pollution and diseases in China," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-19, December.
    10. Byrnes, Joel & Crase, Lin & Dollery, Brian & Villano, Renato, 2010. "The relative economic efficiency of urban water utilities in regional New South Wales and Victoria," Resource and Energy Economics, Elsevier, vol. 32(3), pages 439-455, August.
    11. Goh, Kim Huat & See, Kok Fong, 2021. "Measuring the productivity growth of Malaysia's water sector: Implications for regulatory reform," Utilities Policy, Elsevier, vol. 71(C).
    12. Wanke, Peter & Barros, C.P. & Figueiredo, Otávio, 2016. "Efficiency and productive slacks in urban transportation modes: A two-stage SDEA-Beta Regression approach," Utilities Policy, Elsevier, vol. 41(C), pages 31-39.
    13. Hidemichi Fujii & Jing Cao & Shunsuke Managi, 2015. "Decomposition of Productivity Considering Multi-environmental Pollutants in Chinese Industrial Sector," Review of Development Economics, Wiley Blackwell, vol. 19(1), pages 75-84, February.
    14. Guerrini, Andrea & Romano, Giulia & Mancuso, Fabrizio & Carosi, Laura, 2016. "Identifying the performance drivers of wastewater treatment plants through conditional order-m efficiency analysis," Utilities Policy, Elsevier, vol. 42(C), pages 20-31.
    15. Porcher, Simon, 2017. "The ‘hidden costs’ of water provision: New evidence from the relationship between contracting-out and price in French water public services," Utilities Policy, Elsevier, vol. 48(C), pages 166-175.
    16. Wei, Chu & Löschel, Andreas & Liu, Bing, 2015. "Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis," Energy Economics, Elsevier, vol. 49(C), pages 33-43.
    17. Guerrini, Andrea & Romano, Giulia & Leardini, Chiara, 2018. "Economies of scale and density in the Italian water industry: A stochastic frontier approach," Utilities Policy, Elsevier, vol. 52(C), pages 103-111.
    18. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2021. "Performance assessment of water companies: A metafrontier approach accounting for quality of service and group heterogeneities," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    19. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
    20. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10546-:d:641291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.