IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8924-d611333.html
   My bibliography  Save this article

Community Detection for Air Traffic Networks and Its Application in Strategic Flight Planning

Author

Listed:
  • Silvia Zaoli

    (International Centre for Theoretical Physics, 34151 Trieste, Italy)

  • Giovanni Scaini

    (Dipartimento di Ingegneria e Architettura, Università Degli Studi di Trieste, 34127 Trieste, Italy)

  • Lorenzo Castelli

    (Dipartimento di Ingegneria e Architettura, Università Degli Studi di Trieste, 34127 Trieste, Italy)

Abstract

An environmentally and economically sustainable air traffic management system must rely on fast models to assess and compare various alternatives and decisions at the different flight planning levels. Due to the numerous interactions between flights, mathematical models to manage the traffic can be computationally time-consuming when considering a large number of flights to be optimised at the same time. Focusing on demand–capacity imbalances, this paper proposes an approach that permits to quickly obtain an approximate but acceptable solution of this problem. The approach consists in partitioning flights into subgroups that influence each other only weakly, solving the problem independently in each subgroup, and then aggregating the solutions. The core of the approach is a method to build a network representing the interactions among flights, and several options for the definition of an interaction are tested. The network is then partitioned with existing community detection algorithms. The results show that applying a strategic flight planning optimisation algorithm on each subgroup independently reduces significantly the computational time with respect to its application on the entire European air traffic network, at the cost of few and small violations of sector capacity constraints, much smaller than those actually observed on the day of operations.

Suggested Citation

  • Silvia Zaoli & Giovanni Scaini & Lorenzo Castelli, 2021. "Community Detection for Air Traffic Networks and Its Application in Strategic Flight Planning," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8924-:d:611333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.
    2. Gérald Gurtner & Stefania Vitali & Marco Cipolla & Fabrizio Lillo & Rosario Nunzio Mantegna & Salvatore Miccichè & Simone Pozzi, 2014. "Multi-Scale Analysis of the European Airspace Using Network Community Detection," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-17, May.
    3. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    4. Ribeiro, Nuno Antunes & Jacquillat, Alexandre & Antunes, António Pais & Odoni, Amedeo R. & Pita, João P., 2018. "An optimization approach for airport slot allocation under IATA guidelines," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 132-156.
    5. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part I: Deterministic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 156-166.
    6. Cook, Andrew & Blom, Henk A.P. & Lillo, Fabrizio & Mantegna, Rosario Nunzio & Miccichè, Salvatore & Rivas, Damián & Vázquez, Rafael & Zanin, Massimiliano, 2015. "Applying complexity science to air traffic management," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 149-158.
    7. Ivanov, Nikola & Jovanović, Radosav & Fichert, Frank & Strauss, Arne & Starita, Stefano & Babić, Obrad & Pavlović, Goran, 2019. "Coordinated capacity and demand management in a redesigned Air Traffic Management value-chain," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 139-152.
    8. Pellegrini, Paola & Bolić, Tatjana & Castelli, Lorenzo & Pesenti, Raffaele, 2017. "SOSTA: An effective model for the Simultaneous Optimisation of airport SloT Allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 34-53.
    9. Emil Gegov & M. Nadia Postorino & Mark Atherton & Fernand Gobet, 2013. "Community Structure Detection In The Evolution Of The United States Airport Network," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-21.
    10. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Rigonat, Desirée, 2017. "Reducing ATFM delays through strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 42-59.
    11. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    12. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    13. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    14. Hanif D. Sherali & Justin M. Hill & Michael V. McCrea & Antonio A. Trani, 2011. "Integrating Slot Exchange, Safety, Capacity, and Equity Mechanisms Within an Airspace Flow Program," Transportation Science, INFORMS, vol. 45(2), pages 271-284, May.
    15. Stefano Starita & Arne K. Strauss & Xin Fei & Radosav Jovanović & Nikola Ivanov & Goran Pavlović & Frank Fichert, 2020. "Air Traffic Control Capacity Planning Under Demand and Capacity Provision Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 882-896, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    3. Zhang, Qiuhan & Le, Meilong & Xu, Yan, 2021. "Collaborative delay management towards demand-capacity balancing within User Driven Prioritisation Process," Journal of Air Transport Management, Elsevier, vol. 91(C).
    4. Luis Delgado & G'erald Gurtner & Tatjana Boli'c & Lorenzo Castelli, 2021. "Estimating economic severity of Air Traffic Flow Management regulations," Papers 2112.11263, arXiv.org.
    5. Bongo, Miriam F. & Ocampo, Lanndon A., 2017. "A hybrid fuzzy MCDM approach for mitigating airport congestion: A case in Ninoy Aquino International Airport," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 1-16.
    6. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    7. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    8. Ghoneim, Ayman & Abbass, Hussein A., 2016. "A multiobjective distance separation methodology to determine sector-level minimum separation for safe air traffic scenarios," European Journal of Operational Research, Elsevier, vol. 253(1), pages 226-240.
    9. Künnen, Jan-Rasmus & Strauss, Arne K., 2022. "The value of flexible flight-to-route assignments in pre-tactical air traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 76-96.
    10. Xiao, Mingming & Cai, Kaiquan & Abbass, Hussein A., 2018. "Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: A case study on China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 35-55.
    11. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    12. James C. Jones & David J. Lovell & Michael O. Ball, 2018. "Stochastic Optimization Models for Transferring Delay Along Flight Trajectories to Reduce Fuel Usage," Transportation Science, INFORMS, vol. 52(1), pages 134-149, January.
    13. Dalmau, Ramon & Gawinowski, Gilles & Anoraud, Camille, 2022. "Comparison of various temporal air traffic flow management models in critical scenarios," Journal of Air Transport Management, Elsevier, vol. 105(C).
    14. Dal Sasso, Veronica & Djeumou Fomeni, Franklin & Lulli, Guglielmo & Zografos, Konstantinos G., 2018. "Incorporating Stakeholders’ priorities and preferences in 4D trajectory optimization," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 594-609.
    15. Dal Sasso, Veronica & Djeumou Fomeni, Franklin & Lulli, Guglielmo & Zografos, Konstantinos G., 2019. "Planning efficient 4D trajectories in Air Traffic Flow Management," European Journal of Operational Research, Elsevier, vol. 276(2), pages 676-687.
    16. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    17. Liu, Wenjing & Zhao, Qiuhong & Delahaye, Daniel, 2022. "Research on slot allocation for airport network in the presence of uncertainty," Journal of Air Transport Management, Elsevier, vol. 104(C).
    18. Sadeque Hamdan & Oualid Jouini & Ali Cheaitou & Zied Jemai & Tobias Andersson Granberg, 2023. "On the binary formulation of air traffic flow management problems," Annals of Operations Research, Springer, vol. 321(1), pages 267-279, February.
    19. Prot, D. & Rapine, C. & Constans, S. & Fondacci, R., 2014. "A 4D-sequencing approach for air traffic management," European Journal of Operational Research, Elsevier, vol. 237(2), pages 411-425.
    20. Cavusoglu, Sabriye Sera & Macário, Rosário, 2021. "Minimum delay or maximum efficiency? Rising productivity of available capacity at airports: Review of current practice and future needs," Journal of Air Transport Management, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8924-:d:611333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.