IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8498-d604431.html
   My bibliography  Save this article

Spatio-Temporal Characteristics and Obstacle Factors of Cultivated Land Resources Security

Author

Listed:
  • Liejia Huang

    (Business School, Hubei University, Wuhan 430062, China)

  • Yue Feng

    (Business School, Hubei University, Wuhan 430062, China)

  • Boqing Zhang

    (College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China)

  • Weiyan Hu

    (College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

The security of cultivated land resources is closely related to a country’s food security, economic security and social security, and as such is always the top priority of those responsible for the governance and administration of state affairs. The study area is 13 prefecture-level cities in Hubei Province. An entropy weight method, comprehensive index method, spatial analysis and obstacle degree model are employed to explore the spatio-temporal characteristics and obstacle factors of cultivated land resources in quantity, quality and ecological security. The study shows that (1) the security level of cultivated land resources in Hubei Province showed an upward trend between 2010 and 2019. The land resources’ quality and ecological security showed an upward trend, while quantity security showed a downward trend. (2) The security of cultivated land resources presents obvious spatial differences, generally showing a decreasing trend from west to east. Among them, quantity security presents a spatial pattern of being high in the central, low in the east and lower in the west of Hubei Province. Quality security presents a spatial pattern of being high in the central region and low in the east and west. Ecological security presents a spatial pattern of being high in the west and low in the east. (3) The main obstacles to its security in quantity, in quality and in ecology are obviously different. Finally, some countermeasures are put forward to ensure the security of cultivated land resources from the perspectives of quantity, quality and ecological security, and to assist with the implementation of different protection policies in the western, central and eastern areas of Hubei. This study expands the content and perspective of cultivated land resources security and has a certain novelty in the selection of the index of water resources per unit of land area, and the application of the obstacle degree model expands the research on the influencing factors of cultivated land resource security.

Suggested Citation

  • Liejia Huang & Yue Feng & Boqing Zhang & Weiyan Hu, 2021. "Spatio-Temporal Characteristics and Obstacle Factors of Cultivated Land Resources Security," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8498-:d:604431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alison J. Eagle & David E. Eagle & Tracy E. Stobbe & G. Cornelis van Kooten, 2015. "Farmland Protection and Agricultural Land Values at the Urban-Rural Fringe: British Columbia's Agricultural Land Reserve," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 282-298.
    2. Montanarella, Luca & Panagos, Panos, 2021. "The relevance of sustainable soil management within the European Green Deal," Land Use Policy, Elsevier, vol. 100(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofu Lin & Hui Fu, 2022. "Spatial-Temporal Evolution and Driving Forces of Cultivated Land Based on the PLUS Model: A Case Study of Haikou City, 1980–2020," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    2. Qian Sun & Mingjie Wu & Peiyu Du & Wei Qi & Xinyang Yu, 2022. "Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    3. Kamal Abdelrahim Mohamed Shuka & Wang Ke & Mohammad Sohail Nazar & Ghali Abdullahi Abubakar & AmirReza Shahtahamssebi, 2022. "Impact of Hydrological Infrastructure Projects on Land Use/Cover and Socioeconomic Development in Arid Regions—Evidence from the Upper Atbara and Setit Dam Complex, Kassala, Eastern Sudan," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    4. Xiaoying Wang & Hangang Hu & Aifeng Ning & Guan Li & Xueqi Wang, 2022. "The Impact of Farmers’ Perception on Their Cultivated Land Quality Protection Behavior: A Case Study of Ningbo, China," Sustainability, MDPI, vol. 14(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    2. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    3. Marek Zieliński & Piotr Koza & Artur Łopatka, 2022. "Agriculture from Areas Facing Natural or Other Specific Constraints (ANCs) in Poland, Its Characteristics, Directions of Changes and Challenges in the Context of the European Green Deal," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    4. Daniela Bona & Andrea Cristoforetti & Roberto Zanzotti & Daniela Bertoldi & Nicole Dellai & Silvia Silvestri, 2022. "Matured Manure and Compost from the Organic Fraction of Solid Waste Digestate Application in Intensive Apple Orchards," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    5. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    6. Jonas Volungevicius & Kristina Amaleviciute-Volunge, 2023. "A Conceptual Approach to the Histosols Profile Morphology as a Risk Indicator in Assessing the Sustainability of Their Use and Impact on Climate Change," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    7. Teresa Rodríguez-Espinosa & Jose Navarro-Pedreño & Ignacio Gómez Lucas & María Belén Almendro Candel & Ana Pérez Gimeno & Manuel Jordán Vidal & Iliana Papamichael & Antonis A. Zorpas, 2022. "Environmental Risk from Organic Residues," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    8. Barbara Breza-Boruta & Justyna Bauza-Kaszewska, 2023. "Effect of Microbial Preparation and Biomass Incorporation on Soil Biological and Chemical Properties," Agriculture, MDPI, vol. 13(5), pages 1-19, April.
    9. Orestis Kairis & Chrysoula Aratzioglou & Athanasios Filis & Michel van Mol & Costas Kosmas, 2021. "The Effect of Land Management Practices on Soil Quality Indicators in Crete," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    10. Jagoda Zmyślona & Arkadiusz Sadowski & Natalia Genstwa, 2023. "Plant Protection and Fertilizer Use Efficiency in Farms in a Context of Overinvestment: A Case Study from Poland," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    11. Carina Lackmann & Antonio Šimić & Sandra Ečimović & Alma Mikuška & Thomas-Benjamin Seiler & Henner Hollert & Mirna Velki, 2023. "Subcellular Responses and Avoidance Behavior in Earthworm Eisenia andrei Exposed to Pesticides in the Artificial Soil," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    12. Marinos Stylianou & Iliana Papamichael & Irene Voukkali & Michail Tsangas & Michalis Omirou & Ioannis M. Ioannides & Antonis A. Zorpas, 2023. "LCA of Barley Production: A Case Study from Cyprus," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    13. Hao Li & Yi Chen & Wei-Yew Chang, 2023. "Place Attachment, Self-Efficacy, and Farmers’ Farmland Quality Protection Behavior: Evidence from China," Land, MDPI, vol. 12(9), pages 1-19, September.
    14. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    15. Demirdogen, Alper & Guldal, Huseyin Tayyar & Sanli, Hasan, 2023. "Monoculture, crop rotation policy, and fire," Ecological Economics, Elsevier, vol. 203(C).
    16. Michał Kozłowski & Krzysztof Otremba & Marek Pająk & Marcin Pietrzykowski, 2023. "Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    17. Yagi, Hironori & Garrod, Guy, 2018. "The future of agriculture in the shrinking suburbs: The impact of real estate income and housing costs," Land Use Policy, Elsevier, vol. 76(C), pages 812-822.
    18. Letizia Pace & Vito Imbrenda & Maria Lanfredi & Pavel Cudlín & Tiziana Simoniello & Luca Salvati & Rosa Coluzzi, 2023. "Delineating the Intrinsic, Long-Term Path of Land Degradation: A Spatially Explicit Transition Matrix for Italy, 1960–2010," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
    19. Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Fiorella Stella & Caterina Aura & Claudia Liutic & Gaetano Polizzi, 2022. "A Tool to Assess the Interaction between Energy Efficiency, Demand Response, and Power System Reliability," Energies, MDPI, vol. 15(15), pages 1-12, July.
    20. Liu, Luo & Liu, Zhenjie & Gong, Jianzhou & Wang, Lu & Hu, Yueming, 2019. "Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy," Land Use Policy, Elsevier, vol. 81(C), pages 256-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8498-:d:604431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.