IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p14024-d1244943.html
   My bibliography  Save this article

A Conceptual Approach to the Histosols Profile Morphology as a Risk Indicator in Assessing the Sustainability of Their Use and Impact on Climate Change

Author

Listed:
  • Jonas Volungevicius

    (Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto av. 1, Akademija, 58344 Kedainiai, Lithuania
    Institute of Geosciences, Faculty of Chemistry and Geosciences, Vilnius University, M. K. Ciurlionio g. 21, 01513 Vilnius, Lithuania)

  • Kristina Amaleviciute-Volunge

    (Chemical Research Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto av. 1, Akademija, 58344 Kedainiai, Lithuania)

Abstract

In the context of climate change, the questions of the sustainability of peat soil use are particularly relevant. The evaluation of changes in the properties of soils (including histosols) using chemical methods is expensive, thus, their application possibilities are limited. Analyzing the morphology of histosol profiles would provide effective spatial analysis opportunities for assessing the extent of their anthropogenic transformation and impact on climate change. The key diagnostic horizons and their sequences for the identification of the risk group are the main results of the study. The analysis included 12 soil profiles, whose morphological structure was characterized using the WRB 2022 system of master symbols and suffixes for soil profile horizon descriptions. The analyzed profiles were excavated in forested (relatively natural), agricultural (agrogenized) and peat mining (technogenized) areas. The insights of this article in the discussion are based on the chemical analyses (pH KCl, N, P and K, soil organic carbon, dissolved organic carbon, mobile humus substance, humic and fulvo acids, C:N ratio and humification degree) of three histosol profiles. The main discussion is based on the results of the morphological analysis of the profiles. The results of this research allowed for the identification of a different structure of the histosol profile. The upper part of the histosol profile, which consists of O–H(a,e,i) horizons, indicates its naturalness. The murshic horizon (Hap) is the classic top horizon of the agricultural histosol profile, which is most affected by mineralization. The technogenized histosols have a partially destroyed profile, which is represented by the Ahτ/Haτ or only Haτ horizons at the top. The morphology of the histosol profile and the identification of the relevant horizons (Hap, Haτ and Ahτ) indicate its risks and presuppose a usage optimization solution. The most dangerous in the context of sustainable land use principles and climate change is the murshic horizon (Hap), which is uncovered after removing the horizon O. The risks of sustainable use of histosol are caused by measures that promote its microbiological activity, which is the maintenance of a drained state and cultivation. In the context of GHG emissions and sustainable use, the most favorable means would be the formation of the horizon O by applying perennial plants. Rewetting should be applied to those histosols whose removal from the agricultural or mining balance would provide maximum ecological benefits.

Suggested Citation

  • Jonas Volungevicius & Kristina Amaleviciute-Volunge, 2023. "A Conceptual Approach to the Histosols Profile Morphology as a Risk Indicator in Assessing the Sustainability of Their Use and Impact on Climate Change," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:14024-:d:1244943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/14024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/14024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mārtiņš Vanags-Duka & Arta Bārdule & Aldis Butlers & Emīls Mārtiņš Upenieks & Andis Lazdiņš & Dana Purviņa & Ieva Līcīte, 2022. "GHG Emissions from Drainage Ditches in Peat Extraction Sites and Peatland Forests in Hemiboreal Latvia," Land, MDPI, vol. 11(12), pages 1-17, December.
    2. Kløve, Bjørn & Berglund, Kerstin & Berglund, Örjan & Weldon, Simon & Maljanen, Marja, 2017. "Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions?," Environmental Science & Policy, Elsevier, vol. 69(C), pages 85-93.
    3. Andrzej Łachacz & Barbara Kalisz & Paweł Sowiński & Bożena Smreczak & Jacek Niedźwiecki, 2023. "Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland," Agriculture, MDPI, vol. 13(3), pages 1-20, March.
    4. Montanarella, Luca & Panagos, Panos, 2021. "The relevance of sustainable soil management within the European Green Deal," Land Use Policy, Elsevier, vol. 100(C).
    5. Buschmann, Christoph & Röder, Norbert & Berglund, Kerstin & Berglund, Örjan & Lærke, Poul Erik & Maddison, Martin & Mander, Ülo & Myllys, Merja & Osterburg, Bernhard & van den Akker, Jan J.H., 2020. "Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions," Land Use Policy, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristina Amaleviciute-Volunge & Jonas Volungevicius & Justinas Ceponkus & Rasa Platakyte & Ieva Mockeviciene & Alvyra Slepetiene & Viia Lepane, 2023. "The Impact of Profile Genesis and Land Use of Histosol on Its Organic Substance Stability and Humic Acid Quality at the Molecular Level," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    2. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    3. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    4. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    5. Dorota Kawałko & Elżbieta Jamroz & Maria Jerzykiewicz & Irmina Ćwieląg-Piasecka, 2023. "Characteristics of Humic Acids in Drained Floodplain Soils in Temperate Climates: A Spectroscopic Study," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    6. Marc Dressler, 2023. "Generic strategic profiling of entrepreneurial SMEs – environmentalism as hygiene factor," International Entrepreneurship and Management Journal, Springer, vol. 19(1), pages 121-150, March.
    7. Marek Zieliński & Piotr Koza & Artur Łopatka, 2022. "Agriculture from Areas Facing Natural or Other Specific Constraints (ANCs) in Poland, Its Characteristics, Directions of Changes and Challenges in the Context of the European Green Deal," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    8. Daniela Bona & Andrea Cristoforetti & Roberto Zanzotti & Daniela Bertoldi & Nicole Dellai & Silvia Silvestri, 2022. "Matured Manure and Compost from the Organic Fraction of Solid Waste Digestate Application in Intensive Apple Orchards," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    9. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    10. Teresa Rodríguez-Espinosa & Jose Navarro-Pedreño & Ignacio Gómez Lucas & María Belén Almendro Candel & Ana Pérez Gimeno & Manuel Jordán Vidal & Iliana Papamichael & Antonis A. Zorpas, 2022. "Environmental Risk from Organic Residues," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    11. Barbara Breza-Boruta & Justyna Bauza-Kaszewska, 2023. "Effect of Microbial Preparation and Biomass Incorporation on Soil Biological and Chemical Properties," Agriculture, MDPI, vol. 13(5), pages 1-19, April.
    12. Westin, Kerstin & Bolte, Andreas & Haeler, Elena & Haltia, Emmi & Jandl, Robert & Juutinen, Artti & Kuhlmey, Katharina & Lidestav, Gun & Mäkipää, Raisa & Rosenkranz, Lydia & Triplat, Matevž & Skudnik,, 2023. "Forest values and application of different management activities among small-scale forest owners in five EU countries," Forest Policy and Economics, Elsevier, vol. 146(C).
    13. Liejia Huang & Yue Feng & Boqing Zhang & Weiyan Hu, 2021. "Spatio-Temporal Characteristics and Obstacle Factors of Cultivated Land Resources Security," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    14. Johanna Norris & Bettina Matzdorf & Rena Barghusen & Christoph Schulze & Bart van Gorcum, 2021. "Viewpoints on Cooperative Peatland Management: Expectations and Motives of Dutch Farmers," Land, MDPI, vol. 10(12), pages 1-16, December.
    15. Schatz, Eva-Maria & Bovet, Jana & Lieder, Sebastian & Schroeter-Schlaack, Christoph & Strunz, Sebastian & Marquard, Elisabeth, 2021. "Land take in environmental assessments: Recent advances and persisting challenges in selected EU countries," Land Use Policy, Elsevier, vol. 111(C).
    16. Patrizia Ghisellini & Amos Ncube & Gloria Rotolo & Chiara Vassillo & Serena Kaiser & Renato Passaro & Sergio Ulgiati, 2023. "Evaluating Environmental and Energy Performance Indicators of Food Systems, within Circular Economy and “Farm to Fork” Frameworks," Energies, MDPI, vol. 16(4), pages 1-38, February.
    17. Orestis Kairis & Chrysoula Aratzioglou & Athanasios Filis & Michel van Mol & Costas Kosmas, 2021. "The Effect of Land Management Practices on Soil Quality Indicators in Crete," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    18. Sam, Kabari, 2023. "Uncertainty in policy transfer across contaminated land management regimes: Examining the Nigerian experience," Land Use Policy, Elsevier, vol. 129(C).
    19. Jagoda Zmyślona & Arkadiusz Sadowski & Natalia Genstwa, 2023. "Plant Protection and Fertilizer Use Efficiency in Farms in a Context of Overinvestment: A Case Study from Poland," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    20. Carina Lackmann & Antonio Šimić & Sandra Ečimović & Alma Mikuška & Thomas-Benjamin Seiler & Henner Hollert & Mirna Velki, 2023. "Subcellular Responses and Avoidance Behavior in Earthworm Eisenia andrei Exposed to Pesticides in the Artificial Soil," Agriculture, MDPI, vol. 13(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:14024-:d:1244943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.