IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8209-d599593.html
   My bibliography  Save this article

A Machine Learning-Based Prediction Model of LCCO 2 for Building Envelope Renovation in Taiwan

Author

Listed:
  • Yaw-Shyan Tsay

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • Chiu-Yu Yeh

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • Yu-Han Chen

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • Mei-Chen Lu

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

  • Yu-Chen Lin

    (Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

In 2015, Taiwan’s government announced the “Greenhouse Gas Reduction and Management Act”, the goal of which was a 50% reduction in carbon emissions by 2050, compared with 2005. The residential and commercial sectors produce approximately one third of all carbon emissions in Taiwan, and the number of construction renovation projects is much larger than that of new construction projects. In this paper, we considered the life-cycle CO 2 (LCCO 2 ) of a building envelope renovation project in Tainan and focused on local construction methods for typical row houses. The LCCO 2 of 744 cases with various climate zones, orientations, and insulation and glazing types was calculated via EnergyPlus, SimaPro, and a local database (LCBA database), and the results were then used to develop a machine learning model. Our findings showed that the machine learning model was capable of predicting annual energy consumption and LCCO 2 . With regard to annual energy consumption, the RMSE was 227.09 kW·h (per year) and the R 2 was 0.992. For LCCO 2 , the RMSE was 2792.47 kgCO 2 eq and the R 2 was 0.989, which indicates a high-confidence process for decision making in the early stages of building design and renovation.

Suggested Citation

  • Yaw-Shyan Tsay & Chiu-Yu Yeh & Yu-Han Chen & Mei-Chen Lu & Yu-Chen Lin, 2021. "A Machine Learning-Based Prediction Model of LCCO 2 for Building Envelope Renovation in Taiwan," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8209-:d:599593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Céline Kauffmann & Cristina Tébar Less & Dorothee Teichmann, 2012. "Corporate Greenhouse Gas Emission Reporting: A Stocktaking of Government Schemes," OECD Working Papers on International Investment 2012/1, OECD Publishing.
    2. Lai, Joseph H.K., 2014. "Mandatory reporting of greenhouse gas emissions from buildings: Stakeholders’ opinions in Hong Kong," Energy Policy, Elsevier, vol. 75(C), pages 278-288.
    3. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    4. Diakaki, Christina & Grigoroudis, Evangelos & Kabelis, Nikos & Kolokotsa, Dionyssia & Kalaitzakis, Kostas & Stavrakakis, George, 2010. "A multi-objective decision model for the improvement of energy efficiency in buildings," Energy, Elsevier, vol. 35(12), pages 5483-5496.
    5. Ciulla, G. & D'Amico, A. & Lo Brano, V. & Traverso, M., 2019. "Application of optimized artificial intelligence algorithm to evaluate the heating energy demand of non-residential buildings at European level," Energy, Elsevier, vol. 176(C), pages 380-391.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halil Emre Akbaş & Seda Canikli, 2018. "Determinants of Voluntary Greenhouse Gas Emission Disclosure: An Empirical Investigation on Turkish Firms," Sustainability, MDPI, vol. 11(1), pages 1-24, December.
    2. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    3. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    4. Rui Liang & Xichuan Zheng & Po-Hsun Wang & Jia Liang & Linhui Hu, 2023. "Research Progress of Carbon-Neutral Design for Buildings," Energies, MDPI, vol. 16(16), pages 1-50, August.
    5. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    6. Mengfei Jiang & Xi Liang & David Reiner & Boqiang Lin & Maosheng Duan, 2018. "Stakeholder Views on Interactions between Low-carbon Policies and Carbon Markets in China: Lessons from the Guangdong ETS," Working Papers EPRG 1805, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    8. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    9. Breeda Comyns, 2016. "Determinants of GHG Reporting: An Analysis of Global Oil and Gas Companies," Journal of Business Ethics, Springer, vol. 136(2), pages 349-369, June.
    10. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    11. Thorvaldsen, Kasper Emil & Korpås, Magnus & Lindberg, Karen Byskov & Farahmand, Hossein, 2021. "A stochastic operational planning model for a zero emission building with emission compensation," Applied Energy, Elsevier, vol. 302(C).
    12. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    13. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).
    14. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    15. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    17. Tharindu Prabatha & Kasun Hewage & Rehan Sadiq, 2023. "An Incentives Planning Framework for Residential Energy Retrofits: A Life Cycle Thinking-Based Analysis under Uncertainty," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    18. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
    19. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    20. Yujie Xu & Vivian Loftness & Edson Severnini, 2021. "Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio," Energies, MDPI, vol. 14(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8209-:d:599593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.