IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7642-d590926.html
   My bibliography  Save this article

Long-Term Changes in Floristic Diversity as an Effect of Transforming the Lake into a Retention Reservoir

Author

Listed:
  • Joanna Sender

    (Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, 20-212 Lublin, Poland)

  • Danuta Urban

    (Department of Biological Bases of Forestry, Institute of Soil Science and Environmental Engineering and Management, University of Life Sciences in Lublin, 20-069 Lublin, Poland)

  • Monika Różańska-Boczula

    (Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland)

  • Antoni Grzywna

    (Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, 20-069 Lublin, Poland)

Abstract

The Łęczna-Włodawa Lake District is one of the most valuable natural regions in Europe. It is an area of numerous lakes, peat bogs, swamps and forests, which has been undergoing intensive transformation for decades. Among the largest projects were the creation of the Wieprz Krzna Canal system along with the drainage system and the transformation of natural lakes into retention reservoirs. Among the transformed lakes is Lake Wytyckie. The land was used for analyses near the lake, and floristic and habitat analyses were carried out within the boundaries of the contemporary embankment. The studies were carried out from the 1950s, when the lake functioned as a natural reservoir, through to the 1980s (the transformation of the lake), to the 2020s. Lake Wytyckie was transformed into a retention reservoir by increasing its size and flooding the areas inhabited mainly by peat bog, meadow and forest vegetation, which contributed to the impoverishment of both species and habitat diversity of the area, while it increased the nutrient richness of the water. This was reflected both in the decline in the value of individual diversity indices as well as in the ecological index numbers. In the first period of the research, the area was dominated by wetlands, not drained, with a large variety of species that preferred good lighting conditions. Additionally, the habitat was characterized by low reaction, temperature and trophic values. In the following period, there was an increase in the depth of the water of the reservoir, characterized by high water visibility values, which contributed to the presence of protected species, as did the low moisture content of the areas within the embankment and a neutral pH. The factors currently influencing the formation of the vegetation structure are the high humidity of the entire embankment area, the increase in pH, and the significant increase in the share of built-up areas in the immediate vicinity.

Suggested Citation

  • Joanna Sender & Danuta Urban & Monika Różańska-Boczula & Antoni Grzywna, 2021. "Long-Term Changes in Floristic Diversity as an Effect of Transforming the Lake into a Retention Reservoir," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7642-:d:590926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    2. Chengxiang Zhang & Li Wen & Yuyu Wang & Cunqi Liu & Yan Zhou & Guangchun Lei, 2020. "Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    3. Balati Maihemuti & Tayierjiang Aishan & Zibibula Simayi & Yilinuer Alifujiang & Shengtian Yang, 2020. "Temporal Scaling of Water Level Fluctuations in Shallow Lakes and Its Impacts on the Lake Eco-Environments," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    4. Gregorio Alejandro López Moreira M. & Luigi Hinegk & Andrea Salvadore & Guido Zolezzi & Franz Hölker & Roger Arturo Monte Domecq S. & Martina Bocci & Sebastiano Carrer & Luca De Nat & Juan Escribá & C, 2018. "Eutrophication, Research and Management History of the Shallow Ypacaraí Lake (Paraguay)," Sustainability, MDPI, vol. 10(7), pages 1-32, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    2. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    3. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    4. Breffle, William S. & Muralidharan, Daya & Donovan, Richard P. & Liu, Fangming & Mukherjee, Amlan & Jin, Yongliang, 2013. "Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the Great Lakes environment: A Lake Michigan case study," Resources Policy, Elsevier, vol. 38(2), pages 152-161.
    5. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    6. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    7. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    8. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    9. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    10. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    11. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    12. Juliana Hurtado Rassi, 2020. "Gestión conjunta de ecosistemas transfronterizos: la importancia del trabajo articulado entre los Estados para la conservación de los recursos naturales. Análisis del caso particular de la “Reserva de," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1241, October.
    13. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    14. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    15. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    16. Stenger, Anne & Harou, Patrice & Navrud, Ståle, 2009. "Valuing environmental goods and services derived from the forests," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 1-14, January.
    17. Benjamin Leard, 2011. "Joan Martinez-Alier and Ingo Ropke (eds.): Recent developments in ecological economics (2 vols.)," Journal of Bioeconomics, Springer, vol. 13(2), pages 161-178, July.
    18. Luyanda Mafumbu & Leocadia Zhou & Ahmed Mukalazi Kalumba, 2022. "Assessing Public Perceptions on Coastal Access -Community Profile: A Case Study of Ngqushwa Local Municipality, South Africa," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    19. Vincenzo Formisano & Bernardino Quattrociocchi & Maria Fedele & Mario Calabrese, 2018. "From Viability to Sustainability: The Contribution of the Viable Systems Approach (VSA)," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    20. Gerner, Nadine V. & Nafo, Issa & Winking, Caroline & Wencki, Kristina & Strehl, Clemens & Wortberg, Timo & Niemann, André & Anzaldua, Gerardo & Lago, Manuel & Birk, Sebastian, 2018. "Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project," Ecosystem Services, Elsevier, vol. 30(PB), pages 327-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7642-:d:590926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.