IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6828-d576271.html
   My bibliography  Save this article

Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach

Author

Listed:
  • Antonio Gálvez

    (TECNALIA, Basque Research and Technology Alliance (BRTA), 48170 Derio, Spain
    Division of Operation and Maintenance Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden)

  • Alberto Diez-Olivan

    (TECNALIA, Basque Research and Technology Alliance (BRTA), 48170 Derio, Spain)

  • Dammika Seneviratne

    (TECNALIA, Basque Research and Technology Alliance (BRTA), 48170 Derio, Spain)

  • Diego Galar

    (TECNALIA, Basque Research and Technology Alliance (BRTA), 48170 Derio, Spain
    Division of Operation and Maintenance Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden)

Abstract

Heating, ventilation, and air conditioning (HVAC) systems installed in a passenger train carriage are critical systems, whose failures can affect people or the environment. This, together with restrictive regulations, results in the replacement of critical components in initial stages of degradation, as well as a lack of data on advanced stages of degradation. This paper proposes a hybrid model-based approach (HyMA) to overcome the lack of failure data on a HVAC system installed in a passenger train carriage. The proposed HyMA combines physics-based models with data-driven models to deploy diagnostic and prognostic processes for a complex and critical system. The physics-based model generates data on healthy and faulty working conditions; the faults are generated in different levels of degradation and can appear individually or together. A fusion of synthetic data and measured data is used to train, validate, and test the proposed hybrid model (HyM) for fault detection and diagnostics (FDD) of the HVAC system. The model obtains an accuracy of 92.60%. In addition, the physics-based model generates run-to-failure data for the HVAC air filter to develop a remaining useful life (RUL) prediction model, the RUL estimations performed obtained an accuracy in the range of 95.21–97.80% Both models obtain a remarkable accuracy. The development presented will result in a tool which provides relevant information on the health state of the HVAC system, extends its useful life, reduces its life cycle cost, and improves its reliability and availability; thus enhancing the sustainability of the system.

Suggested Citation

  • Antonio Gálvez & Alberto Diez-Olivan & Dammika Seneviratne & Diego Galar, 2021. "Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6828-:d:576271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    2. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Yasamin Eslami & Michele Dassisti & Mario Lezoche & Hervé Panetto, 2019. "A survey on sustainability in manufacturing organisations: dimensions and future insights," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5194-5214, August.
    4. Nannan Wang & Minxun Ma & Yunfei Liu, 2020. "The Whole Lifecycle Management Efficiency of the Public Sector in PPP Infrastructure Projects," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdellatif Elmouatamid & Brian Fricke & Jian Sun & Philip W. T. Pong, 2023. "Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches," Energies, MDPI, vol. 16(12), pages 1-20, June.
    2. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    3. Samuel Boahen & Kwesi Mensah & Selorm Kwaku Anka & Kwang Ho Lee & Jong Min Choi, 2021. "Fault Detection Algorithm for Multiple-Simultaneous Refrigerant Charge and Secondary Fluid Flow Rate Faults in Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-19, June.
    4. Ruiqi Tian & Santiago Gomez-Rosero & Miriam A. M. Capretz, 2023. "Health Prognostics Classification with Autoencoders for Predictive Maintenance of HVAC Systems," Energies, MDPI, vol. 16(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazem Ali & Ting Chen & Yunhong Hao, 2021. "Sustainable Manufacturing Practices, Competitive Capabilities, and Sustainable Performance: Moderating Role of Environmental Regulations," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    2. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    3. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Ahmad A. A. Khanfar & Mohammad Iranmanesh & Morteza Ghobakhloo & Madugoda Gunaratnege Senali & Masood Fathi, 2021. "Applications of Blockchain Technology in Sustainable Manufacturing and Supply Chain Management: A Systematic Review," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    5. Wang, Yiwei & Gogu, Christian & Kim, Nam H. & Haftka, Raphael T. & Binaud, Nicolas & Bes, Christian, 2019. "Noise-dependent ranking of prognostics algorithms based on discrepancy without true damage information," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 86-100.
    6. Ole Jonny Klakegg & Julien Pollack & Lynn Crawford, 2020. "Preparing for Successful Collaborative Contracts," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    7. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    8. Kim, Hyeonmin & Kim, Jung Taek & Heo, Gyunyoung, 2018. "Failure rate updates using condition-based prognostics in probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 225-233.
    9. Fuguo Cao & Cong Wang, 2022. "An Empirical Study of Determinants of Pay-for-Performance in PPP Procurement," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    10. Malesios, Chrisovalantis & De, Debashree & Moursellas, Andreas & Dey, Prasanta Kumar & Evangelinos, Konstantinos, 2021. "Sustainability performance analysis of small and medium sized enterprises: Criteria, methods and framework," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    11. Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.
    12. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
    13. Kyoungcheol Oh & Eui-Jong Kim & Chang-Young Park, 2022. "A Physical Model-Based Data-Driven Approach to Overcome Data Scarcity and Predict Building Energy Consumption," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    14. Sadia Samar Ali & Rajbir Kaur & D. Jinil Persis & Raiswa Saha & Murugan Pattusamy & V. Raja Sreedharan, 2023. "Developing a hybrid evaluation approach for the low carbon performance on sustainable manufacturing environment," Annals of Operations Research, Springer, vol. 324(1), pages 249-281, May.
    15. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    16. Ahmed Elsheikh & Soumaya Yacout & Mohamed-Salah Ouali & Yasser Shaban, 2020. "Failure time prediction using adaptive logical analysis of survival curves and multiple machining signals," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 403-415, February.
    17. Dourado, Arinan & Viana, Felipe A.C., 2021. "Early life failures and services of industrial asset fleets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Lin, Chun-Pang & Cabrera, Javier & Yang, Fangfang & Ling, Man-Ho & Tsui, Kwok-Leung & Bae, Suk-Joo, 2020. "Battery state of health modeling and remaining useful life prediction through time series model," Applied Energy, Elsevier, vol. 275(C).
    19. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Leite, Gustavo de Novaes Pires & Araújo, Alex Maurício & Rosas, Pedro André Carvalho, 2018. "Prognostic techniques applied to maintenance of wind turbines: a concise and specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1917-1925.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6828-:d:576271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.